Detonation Characterization and Density Functional Theory Investigation of BDNAZ

Article Preview

Abstract:

N-benzoyl-3,3-dinitroazetidine (BDNAZ) is a insensitive high energy explosive. The detonation velocity (D) and pressure (P) of BDNAZ were estimated using the nitrogen equivalent equation according to the experimental density. The density functional theory (DFT) method of the Amsterdam density functional (ADF) was used to calculate the geometry and frequencies. Results showed that D and P are 5568.08 m·s-1 and 12.34 GPa, respectively, the initial decomposition step of BDNAZ is the loss of NO2 from C2 and O5 is the point of molecular reactivity,

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-84

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. E. Frumkin, A. M. Churakov, Y. A. Strelenko, et al. Org. Lett. 1 (1999), 721–724.

Google Scholar

[2] T. G. Archibald, R. Gilardi, K. Baum, et al. J. Org. Chem. 55 (1990), 2920–2924.

Google Scholar

[3] M. A. Hiskey, M. M. Stincipher, J. E. Brown. J. Energ. Mater. 11 (1993), 157–165.

Google Scholar

[4] H. X. Ma, B. Yan, Z. N. Li, et al. J. Hazard. Mater. 169 (2009), 1068–1073.

Google Scholar

[5] H. X. Ma, B. Yan, J. F. Li, et al. J. Mol. Struct. 981 (2010), 103–110.

Google Scholar

[6] H. X. Ma, B. Yan, Y. H. Ren, et al. J. Therm. Anal. Calorim. 103 (2011), 569–575.

Google Scholar

[7] B. Yan, H. X. Ma, N. N. Zhao, et al. J. Therm. Anal. Calorim. 110 (2012), 1253–1257.

Google Scholar

[8] B. Yan, N. N. Zhao, T. Mai, et al. Russ. J. Phys. Chemi. A. 86 (2012), 1962–(1968).

Google Scholar

[9] B. Yan, H. Y. Li, N. N. Zhao, et al. Acta Cryst. E 68(2012), o3376.

Google Scholar

[10] B. Yan, N. N. Zhao, H. X. Ma, et al. S. Afr. J. Chem. 66 (2013), 136–139.

Google Scholar

[11] B. Yan, H. Y. Li, N. N. Zhao, et al. J. Chem. Eng. Data. 58 (2013), 3033–3038.

Google Scholar

[12] B. Yan, H. Y. Li, N. N. Zhao, et al. J. Chem. Thermodynamics. 69 (2014), 152–156.

Google Scholar

[13] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, et al. J. Comput. Chem. 22 (2001), 931–967.

Google Scholar

[14] C. Fonseca Guerra, J.G. Snijders, G. te Velde, et al. Theor. Chem. Acc. 99 (1998), 391–403.

DOI: 10.1007/s002140050021

Google Scholar

[15] E. J. Baerends, J. Autschbach, A. Bérces, et al. ADF2005. 01, SCM, Vrije Universiteit, The Netherlands, (2005).

Google Scholar

[16] H.X. Chen, S.S. Chen, L.J. Li, et al. J. Hazard. Mater. 175 (2010), 569–574.

Google Scholar

[17] S. H. Vosko, L. Wilk, M. Nusair. Can. J. Phys. 58(1980), 1200–1211.

Google Scholar

[18] C. Adamo, V. Barone. J. Chem. Phys. 108(1998), 664–675.

Google Scholar

[19] J. P. Perdew, J. A. Chevary, S. H. Vosko, et al. Phys. Rev. B. 46(1992), 6671–6687.

Google Scholar

[20] I. Mayer. Chem. Phy. Let. 97(1983), 270–274.

Google Scholar

[21] F. L. Hirshfeld. Theor. Chim. Acta. 44(1977), 129–138.

Google Scholar