Domain Adaptation for Video Steganalysis against Motion Vector Based Steganography

Article Preview

Abstract:

Video steganalysis takes effect when videos corrupted by the target steganography method are available. Nevertheless, classical classifiers deteriorate in the opposite case. This paper presents a method to cope with the problem of steganography method mismatch for the detection of motion vector (MV) based steganography. Firstly, Adding-or-Subtracting-One (AoSO) feature against MV based steganography and Transfer Component Analysis (TCA) for domain adaptation are revisited. Distributions of AoSO feature against various MV based steganography methods are illustrated, followed by the potential effect of TCA based AoSO feature. Finally, experiments are carried out on various cases of steganography method mismatch. Performance results demonstrate that TCA+AoSO feature significantly outperforms AoSO feature, and is more favorable for real-world applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

1138-1145

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Wang, H. Zhao, and H. Wang, Video Steganalysis Against Motion Vector-Based Steganography by Adding or Subtracting One Motion Vector Value, IEEE Transactions on Information Forensics and Security, vol. 9, no. 5, 2014, pp.741-751.

DOI: 10.1109/tifs.2014.2308633

Google Scholar

[2] OpenPuff Steganography & Watermarking [Online], Available: http: /embeddedsw. net/OpenPuff_Steganography_Home. html, accessed May, (2014).

Google Scholar

[3] J. Fridrich, J. Kodovsky, Rich Models for Steganalysis of Digital Images, IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, 2012, pp.868-882.

DOI: 10.1109/tifs.2012.2190402

Google Scholar

[4] W. Luo, Y. Wang, and J. Huang, Security analysis on spatial ±1 steganography for JPEG decompressed images, IEEE Signal Processing Letters, vol. 18, no. 1, 2011, pp.39-42.

DOI: 10.1109/lsp.2010.2091127

Google Scholar

[5] MSU Stegovideo [Online], Available: http: /compression. ru/video/ stego_video/index_en. html, accessed May, (2014).

Google Scholar

[6] M. Kutter, F. Jordan, and T. Ebrahimi, Proposal of A Watermarking Technique For Hiding/retrieving Data in Compressed and Decompressed Video, Technical report M2281, ISO/IEC document, JTC1/SC29/WG11, (1997).

Google Scholar

[7] C. Xu, X. Ping, and T. Zhang, Steganography in Compressed Video Stream, Proc. of the First International Conference on Innovative Computing, Information and Control, 2006, pp.269-272.

DOI: 10.1109/icicic.2006.158

Google Scholar

[8] D. Y. Fang, L. W. Chang, Data Hiding For Digital Video with Phase of Motion Vector, Proc. of IEEE International Symposium on Circuits and Systems, 2006, p.1422–1425.

DOI: 10.1109/iscas.2006.1692862

Google Scholar

[9] H. Aly, Data Hiding in Motion Vectors of Compressed Video Based on Their Associated Prediction Error, IEEE Transactions on Information Forensics and Security, vol. 6, no. 1, 2011, pp.14-18.

DOI: 10.1109/tifs.2010.2090520

Google Scholar

[10] Y. Cao, X. Zhao, D. Feng, and R. Sheng, Video Steganography with Perturbed Motion Estimation", Proc. of IH, 11, Lecture Notes in Computer Science, vol. 6958, 2011, pp.193-207.

DOI: 10.1007/978-3-642-24178-9_14

Google Scholar

[11] G. B. Yang, J. J. Li, Y. L. He, and Z. W. Kang, An Information Hiding Algorithm Based On Intra-prediction Modes and Matrix Coding for H. 264/AVC Video Stream, International Journal of Electronics and Communications, 2011, vol. 65, no. 4, pp.331-337.

DOI: 10.1016/j.aeue.2010.03.011

Google Scholar

[12] C. T. Zhang, Y. T. Su, Information Hiding Based on Intra Prediction Modes for H. 264/AVC, Proc. of IEEE International Conference on Multimedia and Expo, 2007, pp.1231-1234.

DOI: 10.1109/icme.2007.4284879

Google Scholar

[13] S. Bouchama, L. Hamami, and H. Aliane, H. 264/AVC Data Hiding Based on Intra Prediction Modes for Real-time Applications, Proc. of the World Congress on Engineering and Computer Science, 2012, pp.655-658.

DOI: 10.1109/icisa.2013.6579384

Google Scholar

[14] C. S. Lu, J. R. Chen, K. C. Fan. Real-Time Frame-dependent Video Watermarking in VLC Domain. Signal Processing: Image Communication, 2005, vol. 20, no. 7, pp.624-642.

DOI: 10.1016/j.image.2005.03.012

Google Scholar

[15] K. Liao, S. G. Lian, Z. C. Guo, J. L. Wang. Efficient Information Hiding in H. 264/AVC Video Coding. Telecommunication System, vol. 49, no. 2, 2012, pp.261-269.

DOI: 10.1007/s11235-010-9372-5

Google Scholar

[16] U. Budhia, and D. Kundur, Digital Video Steganalysis Exploiting Collusion Sensitivity, Sensors, Command. Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense, Edward M. Carapezza, ed., Proc. SPIE, vol. 5403, 2004, pp.210-221.

DOI: 10.1117/12.540814

Google Scholar

[17] U. Budhia, D. Kundur, and T. Zourntos, Digital Video Steganalysis Exploiting Statistical Visibility in The Temporal Domain, IEEE Transactions on Information Forensics and Security, vol. 1, no. 1, 2006, pp.43-55.

DOI: 10.1109/tifs.2006.885020

Google Scholar

[18] V. Pankajakshan, G. Doërr, and P. K. Bora, Detection of Motion-Incoherent Components in Video Streams, IEEE Transactions on Information Forensics and Security, vol. 4, no. 1, 2009, pp.49-58.

DOI: 10.1109/tifs.2008.2012199

Google Scholar

[19] S. Yu, H. X. Xu, Z. H. Yang, and Z. C. Li, A Novel Steganalysis Scheme of Digital Video, Proc. of 2010 International Conference on Multimedia Information Networking and Security, 2010, pp.952-956.

DOI: 10.1109/mines.2010.203

Google Scholar

[20] J. Wu, R. Zhang, M. Chen, and X. Niu, Steganalysis of MSU StegoVideo Based on Discontinuous Coefficient, Proc. of 2nd International Conference on Computer Engineering and Technology, 2010, pp.96-99.

DOI: 10.1109/iccet.2010.5485297

Google Scholar

[21] K. Wang, J. Han, H. Wang, Digital Video Steganalysis by Subtractive Prediction Error Adjacency Matrix, Multimedia Tools and Applications, 2013, in press, DOI: 10. 1007/s11042-013-1373-4.

DOI: 10.1007/s11042-013-1373-4

Google Scholar

[22] Y. Su, C. Zhang, and C. Zhang, A Video Steganalytic Algorithm Against Motion-Vector-Based Steganography, Signal Processing, vol. 91, no. 8, 2011, p.1901-(1909).

DOI: 10.1016/j.sigpro.2011.02.012

Google Scholar

[23] C. Q. Zhang, Y. T. Su, C. T. Zhang, A New Video Steganalysis Algorithm Against Motion Vector Steganography, Proc. of 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008, pp.1-4.

DOI: 10.1109/wicom.2008.781

Google Scholar

[24] Y. Cao, X. Zhao, and D. Feng, Video Steganalysis Exploiting Motion Vector Reversion-based Features, IEEE Signal Processing letters, vol. 19, no. 1, January, 2012, pp.35-38.

DOI: 10.1109/lsp.2011.2176116

Google Scholar

[25] A. D. Ker, P. Bas, R. Bohme, etc, Moving Steganography and Steganalysis from the Laboratory into the Real World, IH&MMSec'13, June 17–19, 2013, Montpellier, France.

Google Scholar

[26] S. J. Pan, Q. Yang, A Survey on Transfer Learning, IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, October, 2010, pp.1345-1359.

Google Scholar

[27] J. Huang, A. Smola, and A. Gretton, etc., Correcting Sample Selection Bias by Unlabeled Data, Proc. of 19th Ann. Conf. Neural Information Processing Systems, (2007).

Google Scholar

[28] M. Long, J. Wang, and G. Ding, etc., Transfer Feature Learning with Joint Distribution Adaptation, IEEE International Conference on Computer Vision, Sydney, Australia, Dec. 2013, pp.2200-2207.

DOI: 10.1109/iccv.2013.274

Google Scholar

[29] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, Domain Adaptation via Transfer Component Analysis, IEEE Transactions on Neural Networks, vol. 22, no. 2, February, 2011, pp.199-210.

DOI: 10.1109/tnn.2010.2091281

Google Scholar

[30] J. Nam, S. J. Pan, and S. Kim, Transfer Defect Learning, Proc. of International Conference on Software Engineering, Piscataway, NJ, USA, 2013, pp.382-391.

Google Scholar

[31] LIBLINEAR-A Library for Large Linear Classification [Online], Available: http: /www. csie. ntu. edu. tw/~cjlin/liblinear, accessed May, (2014).

Google Scholar

[32] FFMPEG Library [Online], Available: http: /ffmpeg. sourceforge. net/, accessed October, (2013).

Google Scholar

[33] VideoLAN-x264, the best H. 264/AVC encoder [Online], Available: http: /www. videolan. org/developers/x264. html, accessed May, (2014).

Google Scholar