Carbon Nanotube Network in Polymer Nanocomposites: Rheology and Flammability

Article Preview

Abstract:

ABS/MWNTs nanocomposites were prepared by using melt blending method. Cone calorimeter and ARES were employed to measure flammability and rheological properties. The flammability properties are strongly affected by the network structure. From the results of ARES tests, it is observed that when the MWNTs content is higher than 1 wt%, nanotubes network structure is formed and flame retardancy of the nanocomposites is significantly improved. The rheological percolation threshold, 0.72 wt%, was determined on the basis of a power law relation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

27-30

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jin Z, Morgan AB, Lamelas FJ, Wilkie CA. Chem Mater 2001; 13: 3774-80.

Google Scholar

[2] Bharadwaj RK. Macromolecules 2001; 34: 9189-92.

Google Scholar

[3] Robello DR, Yamaguchi N, Blanton T, Barnes C. J Am Chem Soc 2004; 126: 8118-9.

Google Scholar

[4] Su SP, Jiang DD, Wilkie, CA. Polym Degrad Stab 2004; 84: 279-288.

Google Scholar

[5] Ramos Filho FG, Melo TJA, Rabello MS, Silva SML. Polym Degrad Stab 2005; 89: 383-392.

Google Scholar

[6] Shah D, Maiti P, Jiang DD, Batt CA, Giannelis EP. Adv Mater 2005; 17: 525-526.

Google Scholar

[7] Bayer G. Fire Mater. 2002; 26: 291-293.

Google Scholar

[8] Bayer G. Fire Mater. 2005; 29: 61-69.

Google Scholar

[9] Bourbigot S, Duquesne S, Jama C. Macromol Symp. 2006; 233: 180-190.

Google Scholar

[10] Moniruzzaman M, Winey KI. Macromolecules. 2006; 39: 5194-205.

Google Scholar

[11] Collins P. Hyperion Catalysis International, Inc. Cambridge, MA 02138.

Google Scholar

[12] Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J. Macromol Rapid Commun. 2002; 23: 761-5.

DOI: 10.1002/1521-3927(20020901)23:13<761::aid-marc761>3.0.co;2-k

Google Scholar

[13] Sarno M, Gorrasi G, Samino D, Sorrentino A, Ciambelli P, Vittoria V. Macromol Rapid Commun. 2004; 25: 1963-(1967).

DOI: 10.1002/marc.200400344

Google Scholar

[14] Kashiwagi T, Grulke E, Hilding J. Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J. Polymer. 2004; 45: 4227-4239.

DOI: 10.1016/j.polymer.2004.03.088

Google Scholar

[15] Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA. Polym Adv Technol. 2006; 17: 272-280.

Google Scholar

[16] Kashiwagi T, Du FM, Winey KI, Groth KM, Shields JR, Bellayer SP, Kim H, Douglas JF. Polymer. 2005; 46: 471-481.

DOI: 10.1016/j.polymer.2004.10.087

Google Scholar

[17] Kashiwagi T, Du FM, Douglas JF, Harris R, Shields JR. Nat Mater. 2005; 4: 928-933.

Google Scholar

[18] Schartel B, Potschke P, Knoll U, Abdel-Goad M. U. Eur Polym J. 2005; 41: 1061-1070.

Google Scholar

[19] Marosfoi BB, Marosi GJ, Szep, A, Anna P, Keszei S, Nagy BJ, Martvonova H, Sajo IE. Polym Adv Technol. 2006; 17: 255-262.

DOI: 10.1002/pat.691

Google Scholar

[20] Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB. Nat Mater. 2004 ; 3: 564-8.

Google Scholar

[21] Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN. Polymer 2006; 47: 4434-9.

Google Scholar