Determination of Rhodium in Waste Rhodium-Loaded Carbon Catalyst Samples Using Teflon Pressure Vessel-Assisted Sample Digestion and ICP-AES

Article Preview

Abstract:

A novel method for the determination of rhodium in waste rhodium-loaded carbon catalyst samples was established by inductively coupled plasma atomic emission spectrometry after samples digested by Teflon pressure digestion vessel with aqua regia. Such experiment conditions were investigated as the influence of sample dissolution methods, digestion time, digestion temperature and interfering ions on the determination. The results indicated that the digestion effect was optimum with samples digested 8 hour at 180 °C. Al, Fe, Mg, Ca and Si in samples had no effect on the determination of rhodium. Experiment indicated rhodium concentration within the range of 0 ~ 150 mg L-1 had a linear relation with emission intensity. The recovery was 99.20% ~ 100.73 %, and the relative standard deviation was 1.8 %. A satisfactory result was obtained when applying the proposed method in the practical sample.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

35-38

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Timmer, D. Thewissen and M.W. Harry: Recl. Trav. Chim. Pays-Bas Vol. 109 (1990), p.87.

Google Scholar

[2] K.H. Park, K. Jang and H.J. Kim: Angew. Chem. Int. Ed Vol. 46 (2007), p.1152.

Google Scholar

[3] R. Schierl: J. Microchem Vol. 67 (2000), p.245.

Google Scholar

[4] X. Dai, C. Koeberl and H. Froschl: Anal. Chim. Acta Vol. 436 (2001), p.79.

Google Scholar

[5] J. Tilch, M. Schuster, M. Schwarzer and Fresenius' J: Anal. Chem Vol. 367 (2000), p.450.

Google Scholar

[6] P. Kovacheva and R. Djingova: Anal. Chim. Acta Vol. 464 (2002), p.7.

Google Scholar

[7] I. Jarvis, M.M. Totland and K.E. Jarvis: Analyst Vol. 122 (1997), p.19.

Google Scholar

[8] K. Kanitsar, G. Koellensperger, S. Hann, A. Limbeck, H. Puxbaum and G. Stingeder: J. Anal. Atom. Spectrom Vol. 18 (2003), p.239.

DOI: 10.1039/b212218a

Google Scholar

[9] S. Zimmermann, C.M. Menzel, Z. Berner, J. -D. Eckhardt, D. Stüben, F. Alt, J. Messerschmidt, H. Taraschewski and B. Sures: Anal. Chim. Acta Vol. 439 (2001), p.203.

DOI: 10.1016/s0003-2670(01)01041-8

Google Scholar

[10] J.D. Whiteley and F. Murray: Sci. Total Environ Vol. 317 (2003), p.121.

Google Scholar

[11] B. Sures, S. Zimmermann, J. Messerschmidt, A. Von Bohlen and F. Alt: Environ. Pollut Vol. 113 (2001), p.341.

Google Scholar

[12] B. Sures, S. Zimmermann, C. Sonntag, D. Stuben and H. Taraschewski: Environ. Pollut Vol. 122 (2003), p.401.

Google Scholar

[13] T. Meisel, N. Fellner and J. Moser: J. Anal. Atom. Spectrom Vol. 18 (2003), p.720.

Google Scholar

[14] D. Cinti, M. Angelone, U. Masi and C. Cremisini: Sci. Total Environ Vol. 293 (2002), p.47.

Google Scholar

[15] R. Djingova, H. Heidenreich, P. Kovacheva and B. Markert: Anal. Chim. Acta Vol. 489 (2003), p.245.

Google Scholar

[16] K. Boch, M. Schuster, G. Risse and M. Schwarzer: Anal. Chim. Acta Vol. 459 (2002), p.257.

Google Scholar

[17] O.V. Borisov, D.M. Coleman, K.A. Oudsema and R.O. Carter III: J. Anal. Atom. Spectrom Vol. 12 (1997), p.239.

Google Scholar