[1]
J. Tang, Z. Huo, S. Brittman, H. Gao and P. Yang: Solution-processed core-shell nanowires for efficient photovoltaic cells, Nat. nanotechnol, Vol. 6 (2011), pp.568-572.
DOI: 10.1038/nnano.2011.139
Google Scholar
[2]
Y. Wu, C. Wadia, W.L. Ma, B. Sadtler and A.P. Alivisatos: Synthesis and photovoltaic application of copper(I) sulfide nanocrystals, Nano let, Vol. 8 (2008), pp.2551-2555.
DOI: 10.1021/nl801817d
Google Scholar
[3]
J. Chen, S.Z. Deng, N.S. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang and W. Ge, Field emission from crystalline copper sulphide nanowire arrays, Appl. Phys. Lett. Vol. 80 (2002), p.3620.
DOI: 10.1063/1.1478149
Google Scholar
[4]
Q.B. Wu, S. Ren, S.Z. Deng, J. Chen and N.S. Xu, Growth of aligned Cu2S nanowire arrays with AAO template and their field-emission properties, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. Vol. 22 (2004).
DOI: 10.1116/1.1752908
Google Scholar
[5]
T. Sakamoto, N. Iguchi and M. Aono, Nonvolatile triode switch using electrochemical reaction in copper sulfide, Appl. Phys. Lett. Vol. 96 (2010), 252104.
DOI: 10.1063/1.3457861
Google Scholar
[6]
A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, Switching kinetics of a Cu2S-based gap-type atomic switch, Nanotechnology. Vol. 22 (2011), p.235201.
DOI: 10.1088/0957-4484/22/23/235201
Google Scholar
[7]
H. Lee, S.W. Yoon, E.J. Kim and J. Park, In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials, Nano Lett. Vol. 7 (2007), pp.778-784.
DOI: 10.1021/nl0630539
Google Scholar
[8]
A.A. Sagade, R. Sharma and I. Sulaniya, Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation, J. Appl. Phys. 105 (2009).
DOI: 10.1063/1.3053350
Google Scholar
[9]
A. Ghezelbash and B.A. Korgel, Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism, Langmuir. Vol. 21 (2005), pp.9451-9456.
DOI: 10.1021/la051196p
Google Scholar
[10]
M.B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee and B.A. Korgel, Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets, J. Am. Chem. Soc. Vol. 125 (2003), pp.16050-16057.
DOI: 10.1021/ja037688a
Google Scholar
[11]
A.E. Saunders, A. Ghezelbash, D.M. Smilgies, M.B. Sigman and B.A. Korgel, Columnar self-assembly of colloidal nanodisks, Nano Lett. Vol. 6 (2006), pp.2959-2963.
DOI: 10.1021/nl062419e
Google Scholar
[12]
T.H. Larsen, M. Sigman, A. Ghezelbash, R.C. Doty and B.A. Korgel, Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor, J. Am. Chem. Soc. Vol. 125 (2003), pp.5638-5639.
DOI: 10.1021/ja0342087
Google Scholar
[13]
M. Kruszynska, H. Borchert, A. Bachmatiuk, M.H. Rümmeli, B. Büchner, J. Parisi and J. Kolny-Olesiak, Size and shape control of colloidal copper(I) sulfide nanorods, ACS Nano. Vol. 6 (2012), pp.5889-5896.
DOI: 10.1021/nn302448n
Google Scholar
[14]
L. Chen, Y.B. Chen, L.M. Wu, Synthesis of uniform Cu2S nanowires from copper-thiolate polymer precursors by a solventless thermolytic method, J. Am. Chem. Soc. Vol. 126 (2004) pp.16334-16335.
DOI: 10.1021/ja045074f
Google Scholar
[15]
Z.P. Liu, D. Xu, J.B. Liang, J.M. Shen, S.Y. Zhang and Y.T. Qian, Growth of Cu2S ultrathin nanowires in a binary surfactant solvent, J. Phys. Chem. B. Vol. 109 (2005), pp.10699-10704.
DOI: 10.1021/jp050332w
Google Scholar
[16]
G.X. Ma, Y.L. Zhou, X.Y. Li, K. Sun, S.Q. Liu, J.Q. Hu and N.A. Kotov, Self-Assembly of Copper Sulfide Nanoparticles into Nanoribbons with Continuous Crystallinity, ACS Nano. Vol. 7 (2013), pp.9010-9018.
DOI: 10.1021/nn4035525
Google Scholar