Effect of TGA Concentration on Morphology of Cu2S Nanoparticals

Article Preview

Abstract:

Copper chalcogenide nanoparticles (NPs) represent a promising material for solar energy conversion and electrical charge storage. We showed that aqueous synthesis of high quality monodispersed high-chalcocite Cu2S NPs is possible. Here, different thioglycolic acid (TGA) concentrations were employed in studies made to investigate the effects of stabilities ratio on particle morphology. It was found that the stabilizes concentration plays a key role in the synthesis of Cu2S NPs, the reaction rate is fast at low concentrations of TGA, and the size range is lager, while flower-like cluster with sizes of 30 nm were formed at high concentrations of TGA. Rapid availability of our results will provide valuable insight into the controlled growth of aqueous dispersions of ternary copper chalcogenide NPs, stimulating further studies of these materials in green energy conversion technologies and drug delivery applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

47-50

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Tang, Z. Huo, S. Brittman, H. Gao and P. Yang: Solution-processed core-shell nanowires for efficient photovoltaic cells, Nat. nanotechnol, Vol. 6 (2011), pp.568-572.

DOI: 10.1038/nnano.2011.139

Google Scholar

[2] Y. Wu, C. Wadia, W.L. Ma, B. Sadtler and A.P. Alivisatos: Synthesis and photovoltaic application of copper(I) sulfide nanocrystals, Nano let, Vol. 8 (2008), pp.2551-2555.

DOI: 10.1021/nl801817d

Google Scholar

[3] J. Chen, S.Z. Deng, N.S. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang and W. Ge, Field emission from crystalline copper sulphide nanowire arrays, Appl. Phys. Lett. Vol. 80 (2002), p.3620.

DOI: 10.1063/1.1478149

Google Scholar

[4] Q.B. Wu, S. Ren, S.Z. Deng, J. Chen and N.S. Xu, Growth of aligned Cu2S nanowire arrays with AAO template and their field-emission properties, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. Vol. 22 (2004).

DOI: 10.1116/1.1752908

Google Scholar

[5] T. Sakamoto, N. Iguchi and M. Aono, Nonvolatile triode switch using electrochemical reaction in copper sulfide, Appl. Phys. Lett. Vol. 96 (2010), 252104.

DOI: 10.1063/1.3457861

Google Scholar

[6] A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, Switching kinetics of a Cu2S-based gap-type atomic switch, Nanotechnology. Vol. 22 (2011), p.235201.

DOI: 10.1088/0957-4484/22/23/235201

Google Scholar

[7] H. Lee, S.W. Yoon, E.J. Kim and J. Park, In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials, Nano Lett. Vol. 7 (2007), pp.778-784.

DOI: 10.1021/nl0630539

Google Scholar

[8] A.A. Sagade, R. Sharma and I. Sulaniya, Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation, J. Appl. Phys. 105 (2009).

DOI: 10.1063/1.3053350

Google Scholar

[9] A. Ghezelbash and B.A. Korgel, Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism, Langmuir. Vol. 21 (2005), pp.9451-9456.

DOI: 10.1021/la051196p

Google Scholar

[10] M.B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee and B.A. Korgel, Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets, J. Am. Chem. Soc. Vol. 125 (2003), pp.16050-16057.

DOI: 10.1021/ja037688a

Google Scholar

[11] A.E. Saunders, A. Ghezelbash, D.M. Smilgies, M.B. Sigman and B.A. Korgel, Columnar self-assembly of colloidal nanodisks, Nano Lett. Vol. 6 (2006), pp.2959-2963.

DOI: 10.1021/nl062419e

Google Scholar

[12] T.H. Larsen, M. Sigman, A. Ghezelbash, R.C. Doty and B.A. Korgel, Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor, J. Am. Chem. Soc. Vol. 125 (2003), pp.5638-5639.

DOI: 10.1021/ja0342087

Google Scholar

[13] M. Kruszynska, H. Borchert, A. Bachmatiuk, M.H. Rümmeli, B. Büchner, J. Parisi and J. Kolny-Olesiak, Size and shape control of colloidal copper(I) sulfide nanorods, ACS Nano. Vol. 6 (2012), pp.5889-5896.

DOI: 10.1021/nn302448n

Google Scholar

[14] L. Chen, Y.B. Chen, L.M. Wu, Synthesis of uniform Cu2S nanowires from copper-thiolate polymer precursors by a solventless thermolytic method, J. Am. Chem. Soc. Vol. 126 (2004) pp.16334-16335.

DOI: 10.1021/ja045074f

Google Scholar

[15] Z.P. Liu, D. Xu, J.B. Liang, J.M. Shen, S.Y. Zhang and Y.T. Qian, Growth of Cu2S ultrathin nanowires in a binary surfactant solvent, J. Phys. Chem. B. Vol. 109 (2005), pp.10699-10704.

DOI: 10.1021/jp050332w

Google Scholar

[16] G.X. Ma, Y.L. Zhou, X.Y. Li, K. Sun, S.Q. Liu, J.Q. Hu and N.A. Kotov, Self-Assembly of Copper Sulfide Nanoparticles into Nanoribbons with Continuous Crystallinity, ACS Nano. Vol. 7 (2013), pp.9010-9018.

DOI: 10.1021/nn4035525

Google Scholar