[1]
Li D, Kaner R B, Graphene-based materials, Nat Nanotechnol. 3 (2008) 101.
Google Scholar
[2]
Geim A K, Novoselov K S, The rise of graphene, Nature materials. 6 (2007) 183-191.
Google Scholar
[3]
Srivastava S, Jain K, Singh V N, et al, Faster response of NO2 sensing in graphene–WO3 nanocomposites, Nanotechnology. 23 (2012) 205501.
Google Scholar
[4]
Leenaerts O, Partoens B, Peeters F M, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study, Physical Review B. 77 (2008) 125416.
Google Scholar
[5]
Lu G, Ocola L E, Chen J, Reduced graphene oxide for room-temperature gas sensors, Nanotechnology. 20 (2009) 445502.
DOI: 10.1088/0957-4484/20/44/445502
Google Scholar
[6]
Fink J K, Polymeric Sensors and Actuators, John Wiley & Sons, USA , (2012).
Google Scholar
[7]
Wu Z, Chen X, Zhu S, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite, Sensors and Actuators B: Chemical. 178 (2013) 485-493.
DOI: 10.1016/j.snb.2013.01.014
Google Scholar
[8]
Al-Mashat L, Shin K, Kalantar-Zadeh K, Graphene/polyaniline nanocomposite for hydrogen sensing, The Journal of Physical Chemistry C. 114 (2010) 16168-16173.
DOI: 10.1021/jp103134u
Google Scholar
[9]
Congjie Wei, Study on preparation and electrochemical properties of polyaniline-based composite, NanJing, (2013).
Google Scholar
[10]
Ying Yang, Controlled fabrication of graphene/polyaniline nanocomposite and its electrochemical applications, JiNan, (2012).
Google Scholar
[11]
Wu Z, Chen X, Zhu S, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite, Sensors and Actuators B: Chemical. 178 (2013) 485-493.
DOI: 10.1016/j.snb.2013.01.014
Google Scholar