[1]
J. Leng , X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications, Progress in Materials Science, 56, 1077–1135 (2011).
DOI: 10.1016/j.pmatsci.2011.03.001
Google Scholar
[2]
J. Hu, Y. Zhu, H. H., J. Lu, Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications, Progress in Polymer Science, 37, 1720–1763 (2012).
DOI: 10.1016/j.progpolymsci.2012.06.001
Google Scholar
[3]
C. Liu, H. Qin and P. T. Mather, Review of progress in shape-memory polymers, Journal Material Chemistry, 17, 1543–1558 (2007).
Google Scholar
[4]
M. Behl, M. Y. Razzaq, A. Lendlein, Multifunctional Shape-Memory Polymers, Advanced Materials., 22, 3388–3410 (2010).
DOI: 10.1002/adma.200904447
Google Scholar
[5]
S. Ahn, P. Deshmukh, M. Gopinadhan, C.O. Osuji, R.M. Kasi, Side-chain liquid crystalline polymer networks: exploiting nanoscale smectic polymorphism to design shape-memory polymers, ACS Nano, 5, 3085–3095 (2011).
DOI: 10.1021/nn200211c
Google Scholar
[6]
W. Ren, A.C. Griffin, Mechanism of strain retention and shape memory in main chain liquid crystalline networks, Physica Status Solidi (b), 249, 1379–1385 (2012).
DOI: 10.1002/pssb.201084217
Google Scholar
[7]
M. Giamberini, P. Cerruti, V. Ambrogi, C. Vestito, F. Covino, C. Carfagna, Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 2. Mechanical characterization, Polymer, 46, 9113–9125 (2005).
DOI: 10.1016/j.polymer.2005.04.093
Google Scholar
[8]
C. Ortiz, M. Wagner, N. Bhargava, C. K. Ober, E. J. Kramer, Deformation of a Polydomain, Smectic Liquid Crystalline Elastomer, Macromolecules, 31, 8531-8539 (1998).
DOI: 10.1021/ma971423x
Google Scholar
[9]
I.A. Rousseau, Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations, Polymer Engineering & Science, 48, 2075–2089 (2008).
DOI: 10.1002/pen.21213
Google Scholar
[10]
V. Ambrogi, M. Giamberini, P. Cerruti, P. Pucci, N. Menna, R. Mascolo, C. Carfagna, Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 1. Synthesis and characterization, Polymer, 46, 2105–2121 (2005).
DOI: 10.1016/j.polymer.2005.01.007
Google Scholar
[11]
V. Ambrogi, M. Giamberini, P. Cerruti, P. Pucci, N. Menna, R. Mascolo, C. Carfagna, Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. part 1. synthesis and characterization, Polymer, 2005, 46, 2105.
DOI: 10.1016/j.polymer.2005.01.007
Google Scholar
[12]
Y. Ji, J.E. Marshall, E.M. Terentjev, Nanoparticle-liquid crystalline elastomer composites. Polymers 2012, 4, 316-340.
DOI: 10.3390/polym4010316
Google Scholar
[13]
M. Giamberini, E. Amendola, C. Carfagna, Liquid crystalline epoxy thermosets, Mol. Cryst. Liq. Cryst., 1995, 266, 9.
Google Scholar
[14]
S. -K. Ahn, R.M. Kasi, Exploiting microphase separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties, Adv. Funct. Mater. 2011, 21, 4543-4549.
DOI: 10.1002/adfm.201101369
Google Scholar