Shape-Memory Nanocomposite Elastomers Filled with Carbon Nanomaterials

Abstract:

Article Preview

In this contribution, the preparation and characterization of new shape-memory epoxy based nanocomposites filled with modified multiwalled carbon nanotubes are reported. The study has been focused on the optimization of the preparation methodology and on the evaluation of the effect of different contents of surface modified carbon nanotubes on the properties and the microstructure of the obtained materials. In particular, dispersion test, infrared spectroscopy, thermogravimetric analysis and bright field transmission electron microscopy have been carried out to analyze the modified filler. Moreover, the obtained nanocomposites have been characterized by morphological analysis, differential scanning calorimetry, thermomechanical analysis and X-ray analysis in order to clarify the effect of the nanofiller on the structure and shape memory properties of the materials.

Info:

Periodical:

Edited by:

Pietro Vincenzini

Pages:

5-10

Citation:

G. C. Lama et al., "Shape-Memory Nanocomposite Elastomers Filled with Carbon Nanomaterials", Advances in Science and Technology, Vol. 100, pp. 5-10, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] J. Leng , X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications, Progress in Materials Science, 56, 1077–1135 (2011).

DOI: https://doi.org/10.1016/j.pmatsci.2011.03.001

[2] J. Hu, Y. Zhu, H. H., J. Lu, Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications, Progress in Polymer Science, 37, 1720–1763 (2012).

DOI: https://doi.org/10.1016/j.progpolymsci.2012.06.001

[3] C. Liu, H. Qin and P. T. Mather, Review of progress in shape-memory polymers, Journal Material Chemistry, 17, 1543–1558 (2007).

[4] M. Behl, M. Y. Razzaq, A. Lendlein, Multifunctional Shape-Memory Polymers, Advanced Materials., 22, 3388–3410 (2010).

DOI: https://doi.org/10.1002/adma.200904447

[5] S. Ahn, P. Deshmukh, M. Gopinadhan, C.O. Osuji, R.M. Kasi, Side-chain liquid crystalline polymer networks: exploiting nanoscale smectic polymorphism to design shape-memory polymers, ACS Nano, 5, 3085–3095 (2011).

DOI: https://doi.org/10.1021/nn200211c

[6] W. Ren, A.C. Griffin, Mechanism of strain retention and shape memory in main chain liquid crystalline networks, Physica Status Solidi (b), 249, 1379–1385 (2012).

DOI: https://doi.org/10.1002/pssb.201084217

[7] M. Giamberini, P. Cerruti, V. Ambrogi, C. Vestito, F. Covino, C. Carfagna, Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 2. Mechanical characterization, Polymer, 46, 9113–9125 (2005).

DOI: https://doi.org/10.1016/j.polymer.2005.04.093

[8] C. Ortiz, M. Wagner, N. Bhargava, C. K. Ober, E. J. Kramer, Deformation of a Polydomain, Smectic Liquid Crystalline Elastomer, Macromolecules, 31, 8531-8539 (1998).

DOI: https://doi.org/10.1021/ma971423x

[9] I.A. Rousseau, Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations, Polymer Engineering & Science, 48, 2075–2089 (2008).

DOI: https://doi.org/10.1002/pen.21213

[10] V. Ambrogi, M. Giamberini, P. Cerruti, P. Pucci, N. Menna, R. Mascolo, C. Carfagna, Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. Part 1. Synthesis and characterization, Polymer, 46, 2105–2121 (2005).

DOI: https://doi.org/10.1016/j.polymer.2005.04.034

[11] V. Ambrogi, M. Giamberini, P. Cerruti, P. Pucci, N. Menna, R. Mascolo, C. Carfagna, Liquid crystalline elastomers based on diglycidyl terminated rigid monomers and aliphatic acids. part 1. synthesis and characterization, Polymer, 2005, 46, 2105.

DOI: https://doi.org/10.1016/j.polymer.2005.04.034

[12] Y. Ji, J.E. Marshall, E.M. Terentjev, Nanoparticle-liquid crystalline elastomer composites. Polymers 2012, 4, 316-340.

DOI: https://doi.org/10.3390/polym4010316

[13] M. Giamberini, E. Amendola, C. Carfagna, Liquid crystalline epoxy thermosets, Mol. Cryst. Liq. Cryst., 1995, 266, 9.

[14] S. -K. Ahn, R.M. Kasi, Exploiting microphase separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties, Adv. Funct. Mater. 2011, 21, 4543-4549.

DOI: https://doi.org/10.1002/adfm.201101369