Bioinspired and Multifunctional Phospholipid Polymer Nanoparticles

Article Preview

Abstract:

Photoreactive and cytocompatible polymer nanoparticles for immobilizing and photoinduced releasing proteins were prepared. A water-soluble and amphiphilic phospholipid polymer, poly (2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-4-(4-(1-methacryloyloxyethyl)-2-methoxy-5-nitrophenoxy) butyric acid (PL)) (PMB-PL) was synthesized. The PMB-PL underwent a cleavage reaction at the PL unit by photoirradiation at a wavelength of 365 nm. Additionally, the PMB-PL took polymer aggregate in aqueous medium and was used to modify the surface of biodegradable poly (L-lactic acid) (PLA) nanoparticle as an emulsifier. The morphology of the PMB-PL/PLA nanoparticle was spherical and approximately 130 nm in diameter. The carboxylic acid group in the PL unit could be used for immobilization of proteins by covalent bonding. The bound proteins were released by a photoinduced cleavage reaction. Within 60 sec, up to 90% of the immobilized proteins were released by photoirradiation and activity of the protein released in the medium was maintained as well as that the original proteins before immobilization. Octa-arginine (R8) could promote internalization of the protein/PLA/PMB-PL nanoparticles into cells when the R8 was co-immobilized on the nanoparticles. After that, photoirradiation induced protein release from the nanoparticles and proteins distributed more evenly inside cells. From these results, we concluded that PMB-PL/PLA nanoparticles have the potential to be used as smart carriers to deliver proteins to biological systems, such as the inside of living cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. H. Tran, J. Y. Choi, T. Ramasamy, D. H. Truong, C. N. Nguyen, H. G. Choi, Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells, Carbohyd. Polym. 114 (2014) 407-415.

DOI: 10.1016/j.carbpol.2014.08.026

Google Scholar

[2] F. Sima, E. Axente, I. Iordache, C. Luculescu, O. Gallet, K. Anselme, Combinatorial matrix assisted pulsed laser evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release, Appl. Surf. Sci. 306 (2014).

DOI: 10.1016/j.apsusc.2014.03.056

Google Scholar

[3] I. I. Slowing, B. G. Trewyn, V. S. Y. Lin, Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins, J. Am. Chem. Soc. 129 (2007) 8845-8849.

DOI: 10.1021/ja0719780

Google Scholar

[4] N. W. S. Kam, Z. Liu, H. J. Dai, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing, J. Am. Chem. Soc. 127 (2005) 12492-12493.

DOI: 10.1021/ja053962k

Google Scholar

[5] J. Park, S. Kurosawa, J. Watanabe, K. Ishihara, Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of c-reactive protein detection, Anal. Chem. 76 (2004) 2649-2655.

DOI: 10.1021/ac035321i

Google Scholar

[6] T. Ito, J. Watanabe, M. Takai, T. Konno, Y. Iwasaki, K. Ishihara. Dual mode bioreactions on polymer nanoparticles covered with phosphorylcholine group. Colloid. Surf. B: Biointerfaces 50 (2006) 55-60.

DOI: 10.1016/j.colsurfb.2006.04.006

Google Scholar

[7] J. Watanabe, K. Ishihara. Sequential enzymatic reactions and stability of biomolecules immobilized onto phospholipid polymer nanoparticles, Biomacromolecules 7 (2006) 171-175.

DOI: 10.1021/bm050544z

Google Scholar

[8] J. Watanabe, K. Ishihara, Instantaneous determination via bimolecular recognition: Usefulness of FRET in phosphorylcholine group enriched nanoparticles, Bioconjugate Chem. 18 (2007) 1811-1817.

DOI: 10.1021/bc070095v

Google Scholar

[9] Y. Goto, R. Matsuno, T. Konno, M. Takai, K. Ishihara, Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules 9 (2008) 828-833.

DOI: 10.1021/bm701161d

Google Scholar

[10] Y. Goto, R. Matsuno, T. Konno, M. Takai, K. Ishihara, Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes, Biomacromolecules 9 (2008) 3252-3257.

DOI: 10.1021/bm800819r

Google Scholar

[11] J. Watanabe, K. Ishihara. Establishing ultimate biointerfaces covered with phosphorylcholine groups. Colloid. Surf. B: Biointerfaces 65 (2008) 155-165.

DOI: 10.1016/j.colsurfb.2008.04.006

Google Scholar

[12] J. Watanabe, K. Ishihara, Single step diagnosis system using the FRET phenomenon induced by antibody-immobilized phosphorylcholine group-covered polymer nanoparticles, Sensor Actuat. B-Chem. 129 (2008) 87-93.

DOI: 10.1016/j.snb.2007.07.100

Google Scholar

[13] T. Konno, J. Watanabe, K. Ishihara, Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups, Biomacromolecules 5 (2004) 342-347.

DOI: 10.1021/bm034356p

Google Scholar

[14] K. Takei, T. Konno, J. Watanabe, K. Ishihara, Regulation of enzyme-substrate complexation by a substrate conjugated with a phospholipid polymer, Biomacromolecules 5 (2004) 858-862.

DOI: 10.1021/bm0344250

Google Scholar

[15] D. J. Shi, M, Matsusaki, M. Akashi. Photo-tunable protein release from biodegradable nanoparticles composed of cinnamic acid derivatives. J. Control. Release. 149 (2011) 182-189.

DOI: 10.1016/j.jconrel.2010.08.009

Google Scholar

[16] H. Shen, M. Liu, H.X. He, L. M. Zhang, J. Huang, Y. Chong Y, ACS Appl. Mater. Inter. 4 (2012) 6317-6323.

Google Scholar

[17] W. Feng W, S. P. Zhu, K. Ishihara, J. L. Brash, Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization, Langmuir 21 (2005) 5980-5987.

DOI: 10.1021/la050277i

Google Scholar

[18] W. Feng W, S. P. Zhu, K. Ishihara, J. L. Brash, Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains, Biointerphases 1 (2006) 50-60.

DOI: 10.1116/1.2187495

Google Scholar

[19] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi. Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 39 (1998) 323-330.

DOI: 10.1002/(sici)1097-4636(199802)39:2<323::aid-jbm21>3.0.co;2-c

Google Scholar

[20] K. Ishihara, N. P. Ziats, B. P. Tierney, N. Nakabayashi, J. M. Anderson. Protein adsorption from human plasma is reduced on phospholipid polymers, J. Biomed. Mater. Res. 25 (1991) 1397-1407.

DOI: 10.1002/jbm.820251107

Google Scholar

[21] Y. Inoue, K. Ishihara. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Colloid. Surf. B: Biointerfaces 81 (2010) 350-357.

DOI: 10.1016/j.colsurfb.2010.07.030

Google Scholar

[22] S. Sakata, Y. Inoue, K. Ishihara, Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces, Langmuir 30 (2014) 2745-2751.

DOI: 10.1021/la404981k

Google Scholar

[23] S. Sakata, Y. Inoue, K. Ishihara, Molecular interaction forces generated during protein adsorption to well-defined polymer brush surfaces, Langmuir 31 (2015) 3108-3114.

DOI: 10.1021/acs.langmuir.5b00351

Google Scholar

[24] K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospholipid polymers and properties as hydrogel membranes. Polym. J. 23 (1990) 355-360.

DOI: 10.1295/polymj.22.355

Google Scholar

[25] T. Ueda, H. Oshida, K. Kurita, K. Ishihara, N. Nakabayashi, Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility, Polym. J. 24 (1992) 1259-1269.

DOI: 10.1295/polymj.24.1259

Google Scholar

[26] W. X. Chen, Y. Inoue, K. Ishihara. Quantitative evaluation of interaction force of fibrinogen at well-defined surfaces with various structures. J. Biomat. Sci. Polym. Ed. 25 (2014) 1629-1640.

DOI: 10.1080/09205063.2014.936925

Google Scholar

[27] K. Ishihara, Y. Iwasaki, N. Nakabayashi, Polymeric lipid nanosphere constructed of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate), Polym. J. 31 (1999) 1231-1236.

DOI: 10.1295/polymj.31.1231

Google Scholar

[28] B. Byambaa, T. Konno, K. Ishihara, Cell adhesion control on photoreactive phospholipid polymer surfaces, Colloid. Surf. B: Biointerfaces 99 (2012) 1-6.

DOI: 10.1016/j.colsurfb.2011.08.029

Google Scholar

[29] B. Byambaa, T. Konno, K. Ishihara. Detachment of cells adhered on the photoreactive phospholipid polymer surface by photoirradiation and their functionality. Colloid. Surf. B: Biointerfaces 103 (2013) 489-495.

DOI: 10.1016/j.colsurfb.2012.11.008

Google Scholar

[30] J. Nakanishi, Y. Kikuchi, T. Takarada, H. Nakayama, K. Yamaguchi, M. Maeda, Photoactivation of a substrate for cell adhesion under standard fluorescence microscopes, J. Am. Chem. Soc. 126  (2004) 16314-16315.

DOI: 10.1021/ja044684c

Google Scholar