A Protease-Activated Ratiometric Fluorescent Probe for pH-Mapping of Malignant Tumor

Article Preview

Abstract:

A protease-activated ratiometric fluorescent probe based on fluorescence resonance energy transfer between a pH-sensitive fluorescent dye and biocompatible Fe3O4 nanocrystals was constructed. A peptide substrate of MMP-9 served as a linker between the particle quencher and the chromophore that was covalently attached to the antitumor antibody. The optical response of the probe to activated MMP-9 and gastric cell line SGC7901 tumor cells was investigated, followed by in vivo tumor imaging. Based on the ratiometric pH response to the tumor microenvironment, the resulting probe was successfully used to image the pH of subcutaneous tumor xenografts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Farquharson, A. Al-Ebraheem, G. Falkenberg, R. Leek, A.L. Harris, D.A. Bradley, The distribution of trace elements Ca, Fe, Cu and Zn and the determination of copper oxidation state in breast tumour tissue using μSRXRF and μXANES, Phys. Med. Biol. 53 (2008).

DOI: 10.1088/0031-9155/53/11/018

Google Scholar

[2] A.F. Chambers, L.M. Matrisian, Changing view of the role of matrix metalloprotinases in metastasis, J. Natl. Cancer. Inst. 89 (1997) 1260-1270.

Google Scholar

[3] B.A. Webb, M. Chimenti, M.P. Jacobson, D.L. Barber, Dysregulated pH: a perfect storm for cancer progression, Nat. Rev. Cancer 11 (2011) 671-677.

DOI: 10.1038/nrc3110

Google Scholar

[4] M.E. Stearns, M. Wang, Type IV collagenase (M(r) 72, 000) expression in human prostate: benign and malignant tissue, Cancer. Res. 53 (1993) 878-883.

Google Scholar

[5] B. Davies, J. Waxman, H. Wasan, P. Abel, G. Williams, T. Krausz, D. Neal, D. Thomas, A. Hanby, F. Balkwill, Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion, Cancer. Res. 53 (1993) 5365-5369.

Google Scholar

[6] M.A. Moses, D. Wiederschain, K.R. Loughlin, D. Zurakowski, C.C. Lamb, M.R. Freeman, Increased incidence of matrix metalloproteinases in urine of cancer patients, Cancer. Res. 58 (1998) 1395-1399.

Google Scholar

[7] M. Egeblad, Z. Werb, New functions for the matrix metalloproteinases in cancer progression, Nat. Rev. Cancer 2 (2002) 161-174.

DOI: 10.1038/nrc745

Google Scholar

[8] R.A. Gatenby, E.T. Gawlinski, A.F. Gmitro, B. Kaylor, R.J. Gillies, Acid-mediated tumor invasion: a multidisciplinary study, Cancer. Res. 66 (2006) 5216-5223.

DOI: 10.1158/0008-5472.can-05-4193

Google Scholar

[9] C. Stock, A. Schwab, Protons make tumor cells move like clockwork, Pflugers Arch. 458 (2009) 981-992.

DOI: 10.1007/s00424-009-0677-8

Google Scholar

[10] R. Weissleder, V. Ntziachristos, Shedding light onto live molecular targets, Nat. Med. 9 (2003) 123-128.

DOI: 10.1038/nm0103-123

Google Scholar

[11] R. Weissleder, C.H. Tung, U. Mahmood, A. Bogdanov, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat. Biotechnol. 17 (1999) 375-378.

DOI: 10.1038/7933

Google Scholar

[12] C. Bremer, C.H. Tung, R. Weissleder, In vivo molecular target assessment of matrix metalloproteinase inhibition, Nat. Med. 7 (2001) 743-748.

DOI: 10.1038/89126

Google Scholar

[13] J. O. McIntyre, B. Fingleton, K.S. Wells, D.W. Piston, C.C. Lynch, S. Gantam, L.M. Matrisian, Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity, Biochem. J. 377 (2004).

DOI: 10.1042/bj20030582

Google Scholar

[14] Y. Zhang, M.K. So, J.H. Rao, Protease-modulated cellular uptake of quantum dots, Nano Lett. 6 (2006) 1988-(1992).

DOI: 10.1021/nl0611586

Google Scholar

[15] S. Lee, E.J. Cha, K. Park, S.Y. Lee, J.K. Hong, I.C. Sun, S.Y. Kim, K. Choi, I.C. Kwon, K. Kim, C.H. Ahn, A Near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination, Angew. Chem. Int. Ed. 47 (2008).

DOI: 10.1002/anie.200705240

Google Scholar

[16] S. Nigam, K.C. Barick, D. Bahadur, Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications, J. Magn. Magn. Mater. 323 (2011) 237-243.

DOI: 10.1016/j.jmmm.2010.09.009

Google Scholar

[17] C. J. Yu, S. M. Wu, W. L. Tseng, Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY conjugates: application to adenosine triphosphate and pyrophosphate sensing, Anal. Chem. 85 (2013) 8559-8565.

DOI: 10.1021/ac400919j

Google Scholar

[18] J.H. Lee, Y.M. Huh, Y. Jun, J. Seo, J. Jang, H.T. Song, S. Kim, E.J. Cho, H.G. Yoon, J.S. Suh, J. Cheon, Artificially Engineered Magnetic Nanoparticles for Ultra-sensitive Molecular Imaging, Nat. Med. 13 (2007) 95-99.

DOI: 10.1038/nm1467

Google Scholar

[19] J. Zhou, C. L. Fang, T.J. Chang, D.H. Shangguan, A pH Sensitive Ratiometric Fluorophore and Its Application for Monitoring the Intracellular and Extracellular pHs Simultaneously, J. Mater. Chem. B 1 (2013) 661-667.

DOI: 10.1039/c2tb00179a

Google Scholar