Design and Analysis of Pneumatic Bending Actuator Used in Soft Robotics

Article Preview

Abstract:

Pneumatic soft actuators can change their shapes under pneumatic pressure actuation and are capable of continuous bending. However, the air chambers inside will expand during the actuation process and cause nonlinear problems. Therefore pneumatic actuators are difficulties to model. In this paper, three types of bending actuators with different air chamber shapes are designed and the finite element model (FEM) is developed to simulate the deformation under different air pressure actuation. A prototype of the bending actuator is fabricated and a method to limit the expansion of the air chamber is designed based on the FEM results, which can effectively improve the expansion and the response of the actuator under low air pressure conditions through experimental comparison.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-201

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Polygerinos, N. Correll, S.A. Morin, B. Mosadegh, C.D. Onal, K. Petersen, M. Cianchetti, M.T. Tolley, and R.F. Shepherd, Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction, Adv. Eng. Mater. 19 (2017) 1700016.

DOI: 10.1002/adem.201700016

Google Scholar

[2] J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida, Soft Manipulators and Grippers: A Review, Front. Robot. AI 3 (2016).

DOI: 10.3389/frobt.2016.00069

Google Scholar

[3] R. Deimel and O. Brock, A novel type of compliant and underactuated robotic hand for dexterous grasping, Int. J. Robot. Res. 35 (2015) 161-185.

DOI: 10.15607/rss.2014.x.018

Google Scholar

[4] M. Al-Rubaiai, T. Pinto, C. Qian, and X. Tan, Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material, Soft Robot. 6 (2019) 318-332.

DOI: 10.1089/soro.2018.0056

Google Scholar

[5] C. Majidi, Soft Robotics: A Perspective—Current Trends and Prospects for the Future, Soft Robot. 1 (2014) 5-11.

DOI: 10.1089/soro.2013.0001

Google Scholar

[6] C. Laschi, B. Mazzolai, and M. Cianchetti, Soft robotics: Technologies and systems pushing the boundaries of robot abilities, Sci. Robot. 1 (2016).

DOI: 10.1126/scirobotics.aah3690

Google Scholar

[7] S. Seok, C.D. Onal, K.-J. Cho, R.J. Wood, D. Rus, and S. Kim, Meshworm: A Peristaltic Soft Robot with Antagonistic Nickel Titanium Coil Actuators, IEEE-ASME Trans. Mechatron. 18 (2013) 1485–1497.

DOI: 10.1109/tmech.2012.2204070

Google Scholar

[8] I. Petre, A. Deaconescu, L. Rogozea, and T.I. Deaconescu, Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles, Int. J. Adv. Robot. Syst. 11 (2014) 105.

DOI: 10.5772/58693

Google Scholar

[9] M.S. Verma, A. Ainla, D. Yang, D. Harburg, and G. M. Whitesides, A Soft Tube-Climbing Robot, Soft Robot. 5 (2018) 133–137.

DOI: 10.1089/soro.2016.0078

Google Scholar

[10] H.K. Yap, H.Y. Ng, and C.H. Yeow, High-Force Soft Printable Pneumatics for Soft Robotic Applications, Soft Robot. 3 (2016) 144–158.

DOI: 10.1089/soro.2016.0030

Google Scholar

[11] R.K. Katzschmann, A.D. Marchese, and D. Rus, Hydraulic Autonomous Soft Robotic Fish for 3D Swimming, Springer Tracts Adv. Robot. (2015) 405–420.

DOI: 10.1007/978-3-319-23778-7_27

Google Scholar

[12] S. Chen, Y. Cao, M. Sarparast, H. Yuan, L. Dong, X. Tan, and C. Cao, Soft Crawling Robots: Design, Actuation, and Locomotion, Adv. Mater. Technol. 5(2019) 1900837.

DOI: 10.1002/admt.201900837

Google Scholar

[13] P. Polygerinos, S. Lyne, Zheng Wang, L.F. Nicolini, B. Mosadegh, G.M. Whitesides, and C.J. Walsh, Towards a soft pneumatic glove for hand rehabilitation, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014).

DOI: 10.1109/iros.2013.6696549

Google Scholar

[14] P. Polygerinos, Z. Wang, K.C. Galloway, R.J. Wood, and C.J. Walsh, Soft robotic glove for combined assistance and at-home rehabilitation, Robot. Auton. Syst. 73 (2015) 135–143.

DOI: 10.1016/j.robot.2014.08.014

Google Scholar

[15] K.C. Galloway, K.P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R.J. Wood, and D.F. Gruber, Soft Robotic Grippers for Biological Sampling on Deep Reefs, Soft Robot. 3 (2016) 23-33.

DOI: 10.1089/soro.2015.0019

Google Scholar

[16] J. Fan, S. Wang, Q. Yu, and Y. Zhu, Swimming Performance of the Frog-Inspired Soft Robot, Soft Robot. 7 (2020) 615-626.

DOI: 10.1089/soro.2019.0094

Google Scholar

[17] J. Yan, H. Dong, X. Zhang, and J. Zhao, A three-chambed soft actuator module with omnidirectional bending motion, 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR) (2016) 505-510.

DOI: 10.1109/rcar.2016.7784081

Google Scholar

[18] Y. Elsayed, A. Vincensi, C. Lekakou, T. Geng, C.M. Saaj, T. Ranzani, M. Cianchetti, and A. Menciassi, Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications, Soft Robot. 1(2014) 255-262.

DOI: 10.1089/soro.2014.0016

Google Scholar

[19] Y. Sun, S. Song, X. Liang, and H. Ren, A Miniature Soft Robotic Manipulator Based on Novel Fabrication Methods, IEEE Robot. Autom. Lett. 1 (2016) 617-623.

DOI: 10.1109/lra.2016.2521889

Google Scholar