Effect of Processing Parameters on Mechanical Properties of Al7175/Boron Carbide (B4C) Composite Fabricated by Powder Metallurgy Techniques

Article Preview

Abstract:

Metal matrix composites attain a significant position in Industrial, defense, structural and automobile applications. To amplify that strategy there is a need to find out the conditional behavior of the composites and enhancing the properties will be mandatory. The present work mainly investigates on the effect of processing parameters like densification rates, sintering temperature, reinforcement content on the microstructure, mechanical properties of the Al7175/B4C composite material fabricated by mechanical milling and powder metallurgy techniques. Results show there is a grain size reduction and refinement in the composite material through ball milling operations and along with that increasing B4C content in the composite powders make milling conditions very effective. Increasing the sintering temperature results in a consistent grain growth along with that porosity level decreases up to a limit and then attain a steady state, the strength of the composites increases with compaction pressures but reinforcements content effects the strength of the material by losing its ductility making it brittle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-16

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Amal E. Nassar, Eman E. Nassar. Properties of Aluminium matrix Nano composites prepared by powder metallurgy processing. Journal of King Saud University – Engineering sciences (2017) 29, 295-299.

DOI: 10.1016/j.jksues.2015.11.001

Google Scholar

[2] Ruxia Liu, Chuandong Wu, Jian Zhang, Guoqiang Luo, Qiang Shen, Lianmeng Zhang. Microstructural and mechanical behaviours of the ultrafine grained AA7075/B4C composites synthesized via one-step consolidation. Journal of alloys and compounds 748(2018) 737 – 744.

DOI: 10.1016/j.jallcom.2018.03.152

Google Scholar

[3] Hamid Alihosseini, Kamran Dehghani, Jamshid Kamail. Microstructure characterization, mechanical properties, compressibility and sintering behaviour of Al-B4C nano composite powders. Advanced powder Technology 28(2017) 2126-2134.

DOI: 10.1016/j.apt.2017.05.019

Google Scholar

[4] A. Javdani, A.H. Daei-Sorkhab. Microstructural and mechanical behaviour of blended powder semisolid formed Al7075/B4C composites under different conditions. Trans. Nonferrous Met. Soc. China 28(2018) 1298-1310.

DOI: 10.1016/s1003-6326(18)64767-3

Google Scholar

[5] Ruixiao Zheng, Jing Chen, Yitan Zhang, Kei Ameyama, Chaoli Ma. Fabrication and characterization of hybrid structured Al alloy matrix composites reinforced by high volume fraction of B4C particles. Materials science & Engineering A 601(2014) 20-28.

DOI: 10.1016/j.msea.2014.02.032

Google Scholar

[6] Xiaoxuan Pang, Yajiang Xian, Wei Wang, Pengcheng Zhang. Tensile properties and strengthening effects of 6061Al/12wt%B4C composites reinforced with nano-Al2O3 particles. Journal of alloys and compounds 768(2018) 476-484.

DOI: 10.1016/j.jallcom.2018.07.072

Google Scholar

[7] R. Harichandran, N. Selvakumar. Effect of Nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Archives of civil and mechanical engineering 16(2016) 147-158.

DOI: 10.1016/j.acme.2015.07.001

Google Scholar

[8] Alireza Abdollahi, Ali Alizadeh, Hamid Reza Baharvandi. Dry sliding tribological behaviour and mechanical properties of Al2024-5 wt% B4C nanocomposites produced by mechanical milling and hot extrusion. Materials and design 55(2014) 471-481.

DOI: 10.1016/j.matdes.2013.09.024

Google Scholar

[9] I. Topcu, H.O. Gulsoy, N. Kadioglu, A.N. Gulluoglu, Processing and mechanical properties of B4C reinforced Al matrix composites, journal of alloys and compounds 482(2009) 516-521.

DOI: 10.1016/j.jallcom.2009.04.065

Google Scholar

[10] Liu Zhang, Zhi Wang, Qinggang Li, Junyan Wu, Guopu Shi, Fangfang Qi, Xin Zhou. Microtopography and mechanical properties of vaccum hot pressing Al/B4C composites. Ceramic International 44(2018) 3048-3055.

DOI: 10.1016/j.ceramint.2017.11.065

Google Scholar

[11] R.G. Vogt, Z. Zhang, T.D. Topping, E.J. Lavernia, J.M. Schoenung. Cryomilled aluminium alloy and boron carbide nano-composite plate. Journal of materials processing technology 209(2009) 5046-5053.

DOI: 10.1016/j.jmatprotec.2009.02.002

Google Scholar

[12] Guttikonda Manohar, Abhijit dey, K.M. Pandey, S.R. Maity. Fabrication of metal matrix composites by powder metallurgy: A Review. AIP Conference Proceedings 1952, 020041 (2018);.

DOI: 10.1063/1.5032003

Google Scholar

[13] VIALA, J. C., BOUIX, J., GONZALEZ, G., & ESNOUF, C. (1997). Chemical reactivity of aluminium with boron carbide. Journal of Materials Science, 32(17), 4559–4573. https://doi.org/10.1023/A:1018625402103.

DOI: 10.1023/a:1018625402103

Google Scholar

[14] Sener Karabulut, Halil karakoc, Ramazan Citak. Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Composites Part B 101 (2016) 87-98.

DOI: 10.1016/j.compositesb.2016.07.006

Google Scholar

[15] K. Soorya Prakash, P.M. Gopal, D. Anburose, V. Kavimani. Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites. Ain Shams Engineering Journal 9 (2018) 1489-1496.

DOI: 10.1016/j.asej.2016.11.003

Google Scholar

[16] E. Mohammad Sharifi, F. Karimzadeh, M.H. Enayati. Fabrication and Evaluation of mechanical and tribological properties of boron carbide reinforced aluminium matrix nanocomposites. Materials and Design 32(2011) 3263-3271.

DOI: 10.1016/j.matdes.2011.02.033

Google Scholar

[17] M.F. Ibrahim, H. R. Ammar, A. M. Samuel, M. S. Soliman, F. H. Samuel. On the impact toughness of Al-15% B4C metal matrix composites. Composites Part B 79(2015) 83-94.

DOI: 10.1016/j.compositesb.2015.04.018

Google Scholar

[18] Eshan Ghasali, Masoud Alizadeh, Touradj Ebadzadeh, Amir hossein pakseresht, Ali Rahbari. Investigation on microstructural and mechanical properties of B4C aluminium matix composites prepared by microwave sintering. J MATER RES TECHNOL.2015;4(4) 411-415.

DOI: 10.1016/j.jmrt.2015.02.005

Google Scholar

[19] Amir Atrian, Gholam-Hossein Majzoobi. Characterization of Al7075-B4C Composite Fabricated by Powder Compaction Techniques Under Different Densification Rates. 10 th International Conference on Composite Science and Technology ICCST/10.

Google Scholar

[20] A. ALIZADEH, E TAHERI-NASSAJ, H R BAHARVANDI, Preparation and investigation of Al-4 wt% B4C Nano composite powders using mechanical milling. Bull. Mater.Sci., Vol34, No.5, August 2011, pp.1039-1048 © Indian Academy of sciences.

DOI: 10.1007/s12034-011-0158-5

Google Scholar

[21] Anil Kumar Bodukuri, K. Eswaraiah, Katla Rajendar, V. Sampath. Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties. Perspectives in Sciences (2016) 8, 428-431.

DOI: 10.1016/j.pisc.2016.04.096

Google Scholar

[22] M. R. Moradi, A. Moloodi, A. Habibolahzadeh. Fabrication of Nano-Composite Al-B4C foam via Powder Metallurgy-Space Holder Technique. Procedia material science 11 (2015) 553-559.

DOI: 10.1016/j.mspro.2015.11.059

Google Scholar

[23] S. Ozkaya, A. Canakci. Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling. Powder Technology 297 (2016) 8-16.

DOI: 10.1016/j.powtec.2016.04.004

Google Scholar

[24] Manohar, G., Pandey, K. M., & Ranjan Maity, S. (2020). Effect of compaction pressure on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques. Materials Today: Proceedings, xxxx, 0–4. https://doi.org/10.1016/j.matpr.2020.05.194.

DOI: 10.1016/j.matpr.2020.05.194

Google Scholar

[25] Manohar, G., Pandey, K. M., & Maity, S. R. (2020). Aluminium ({AA}7075) Metal Matrix Composite Reinforced with B4C Nano Particles and Effect of Individual Alloying Elements in Al Fabricated by Powder Metallurgy Techniques. Journal of Physics: Conference Series, 1451, 12024. https://doi.org/10.1088/1742-6596/1451/1/012024.

DOI: 10.1088/1742-6596/1451/1/012024

Google Scholar

[26] Suryakumari, T. S. A., Ranganathan, S., & Shankar, P. (2015). Study on Mechanical Properties of Al 7075 Hybrid Metal Matrix Composites. Applied Mechanics and Materials, 813–814, 230–234. https://doi.org/10.4028/www.scientific.net/amm.813-814.230.

DOI: 10.4028/www.scientific.net/amm.813-814.230

Google Scholar

[27] Chen, X. G., St-Georges, L., & Roux, M. (2012). Mechanical Behavior of High Boron Content Al-B4C Metal Matrix Composites at Elevated Temperatures. Materials Science Forum, 706–709, 631–637. https://doi.org/10.4028/www.scientific.net/msf.706-709.631.

DOI: 10.4028/www.scientific.net/msf.706-709.631

Google Scholar

[28] Dasgupta, R., Das, S., & Jha, A. K. (2012). Sliding Wear Behaviour of Al-7075 Based Metal Matrix Composite: Effect of Processing Parameters. Key Engineering Materials, 504–506, 555–560. https://doi.org/10.4028/www.scientific.net/kem.504-506.555.

DOI: 10.4028/www.scientific.net/kem.504-506.555

Google Scholar

[29] Ravichandran, M., Manikandan, A., & Omkumar, M. S. (2016). Investigations on Properties of Al-B4C Composites Synthesized through Powder Metallurgy Route. Applied Mechanics and Materials, 852, 93–97. https://doi.org/10.4028/www.scientific.net/amm.852.93.

DOI: 10.4028/www.scientific.net/amm.852.93

Google Scholar

[30] Li, H., Zhang, Y. T., Ameyama, K., Yang, H. J., Liu, Z. G., & Ma, C. L. (2016). Meso-Structure Design of B4C-Al/Al Composites by Hot Pressing. Materials Science Forum, 849, 801–806. https://doi.org/10.4028/www.scientific.net/msf.849.801.

DOI: 10.4028/www.scientific.net/msf.849.801

Google Scholar

[31] Li, D., Li, Q. L., Li, X. J., & Liu, W. (2014). Research on Microstructure and Mechanical Properties of B4C/Al Composites by Liquid Mental Mixing. Applied Mechanics and Materials, 703, 9–16. https://doi.org/10.4028/www.scientific.net/amm.703.9.

DOI: 10.4028/www.scientific.net/amm.703.9

Google Scholar

[32] Nie, C.Z., Gu, J.J., Liu, J.L., & Zhang, D. (2007). The Influence of Mixing Manner on Microstructure and Mechanical Performance of B4CP/2024Al Composites. Key Engineering Materials, 351, 195–200. https://doi.org/10.4028/www.scientific.net/kem.351.195.

DOI: 10.4028/www.scientific.net/kem.351.195

Google Scholar

[33] Ganesh, M., Srinivasan, D., & Vivekanandan, N. (2018). Experimental Investigation on Mechanical and Wear Properties of Al7075-B4C-TiO2 Composite. Nano Hybrids and Composites, 23, 17–23. https://doi.org/10.4028/www.scientific.net/nhc.23.17.

DOI: 10.4028/www.scientific.net/nhc.23.17

Google Scholar

[34] Mohanty, R.M., & Balasubramanian, K. (2008). Boron Rich Boron Carbide: An Emerging High Performance Material. Key Engineering Materials, 395, 125–142. https://doi.org/10.4028/www.scientific.net/kem.395.125.

DOI: 10.4028/www.scientific.net/kem.395.125

Google Scholar

[35] Manohar, G., Pandey, K. M., & Maity, S. R. (2020). Effect of china clay on mechanical properties of AA7075/B4C hybrid composite fabricated by powder metallurgy techniques. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.740.

DOI: 10.1016/j.matpr.2020.10.740

Google Scholar