[1]
Amal E. Nassar, Eman E. Nassar. Properties of Aluminium matrix Nano composites prepared by powder metallurgy processing. Journal of King Saud University – Engineering sciences (2017) 29, 295-299.
DOI: 10.1016/j.jksues.2015.11.001
Google Scholar
[2]
Ruxia Liu, Chuandong Wu, Jian Zhang, Guoqiang Luo, Qiang Shen, Lianmeng Zhang. Microstructural and mechanical behaviours of the ultrafine grained AA7075/B4C composites synthesized via one-step consolidation. Journal of alloys and compounds 748(2018) 737 – 744.
DOI: 10.1016/j.jallcom.2018.03.152
Google Scholar
[3]
Hamid Alihosseini, Kamran Dehghani, Jamshid Kamail. Microstructure characterization, mechanical properties, compressibility and sintering behaviour of Al-B4C nano composite powders. Advanced powder Technology 28(2017) 2126-2134.
DOI: 10.1016/j.apt.2017.05.019
Google Scholar
[4]
A. Javdani, A.H. Daei-Sorkhab. Microstructural and mechanical behaviour of blended powder semisolid formed Al7075/B4C composites under different conditions. Trans. Nonferrous Met. Soc. China 28(2018) 1298-1310.
DOI: 10.1016/s1003-6326(18)64767-3
Google Scholar
[5]
Ruixiao Zheng, Jing Chen, Yitan Zhang, Kei Ameyama, Chaoli Ma. Fabrication and characterization of hybrid structured Al alloy matrix composites reinforced by high volume fraction of B4C particles. Materials science & Engineering A 601(2014) 20-28.
DOI: 10.1016/j.msea.2014.02.032
Google Scholar
[6]
Xiaoxuan Pang, Yajiang Xian, Wei Wang, Pengcheng Zhang. Tensile properties and strengthening effects of 6061Al/12wt%B4C composites reinforced with nano-Al2O3 particles. Journal of alloys and compounds 768(2018) 476-484.
DOI: 10.1016/j.jallcom.2018.07.072
Google Scholar
[7]
R. Harichandran, N. Selvakumar. Effect of Nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Archives of civil and mechanical engineering 16(2016) 147-158.
DOI: 10.1016/j.acme.2015.07.001
Google Scholar
[8]
Alireza Abdollahi, Ali Alizadeh, Hamid Reza Baharvandi. Dry sliding tribological behaviour and mechanical properties of Al2024-5 wt% B4C nanocomposites produced by mechanical milling and hot extrusion. Materials and design 55(2014) 471-481.
DOI: 10.1016/j.matdes.2013.09.024
Google Scholar
[9]
I. Topcu, H.O. Gulsoy, N. Kadioglu, A.N. Gulluoglu, Processing and mechanical properties of B4C reinforced Al matrix composites, journal of alloys and compounds 482(2009) 516-521.
DOI: 10.1016/j.jallcom.2009.04.065
Google Scholar
[10]
Liu Zhang, Zhi Wang, Qinggang Li, Junyan Wu, Guopu Shi, Fangfang Qi, Xin Zhou. Microtopography and mechanical properties of vaccum hot pressing Al/B4C composites. Ceramic International 44(2018) 3048-3055.
DOI: 10.1016/j.ceramint.2017.11.065
Google Scholar
[11]
R.G. Vogt, Z. Zhang, T.D. Topping, E.J. Lavernia, J.M. Schoenung. Cryomilled aluminium alloy and boron carbide nano-composite plate. Journal of materials processing technology 209(2009) 5046-5053.
DOI: 10.1016/j.jmatprotec.2009.02.002
Google Scholar
[12]
Guttikonda Manohar, Abhijit dey, K.M. Pandey, S.R. Maity. Fabrication of metal matrix composites by powder metallurgy: A Review. AIP Conference Proceedings 1952, 020041 (2018);.
DOI: 10.1063/1.5032003
Google Scholar
[13]
VIALA, J. C., BOUIX, J., GONZALEZ, G., & ESNOUF, C. (1997). Chemical reactivity of aluminium with boron carbide. Journal of Materials Science, 32(17), 4559–4573. https://doi.org/10.1023/A:1018625402103.
DOI: 10.1023/a:1018625402103
Google Scholar
[14]
Sener Karabulut, Halil karakoc, Ramazan Citak. Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Composites Part B 101 (2016) 87-98.
DOI: 10.1016/j.compositesb.2016.07.006
Google Scholar
[15]
K. Soorya Prakash, P.M. Gopal, D. Anburose, V. Kavimani. Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites. Ain Shams Engineering Journal 9 (2018) 1489-1496.
DOI: 10.1016/j.asej.2016.11.003
Google Scholar
[16]
E. Mohammad Sharifi, F. Karimzadeh, M.H. Enayati. Fabrication and Evaluation of mechanical and tribological properties of boron carbide reinforced aluminium matrix nanocomposites. Materials and Design 32(2011) 3263-3271.
DOI: 10.1016/j.matdes.2011.02.033
Google Scholar
[17]
M.F. Ibrahim, H. R. Ammar, A. M. Samuel, M. S. Soliman, F. H. Samuel. On the impact toughness of Al-15% B4C metal matrix composites. Composites Part B 79(2015) 83-94.
DOI: 10.1016/j.compositesb.2015.04.018
Google Scholar
[18]
Eshan Ghasali, Masoud Alizadeh, Touradj Ebadzadeh, Amir hossein pakseresht, Ali Rahbari. Investigation on microstructural and mechanical properties of B4C aluminium matix composites prepared by microwave sintering. J MATER RES TECHNOL.2015;4(4) 411-415.
DOI: 10.1016/j.jmrt.2015.02.005
Google Scholar
[19]
Amir Atrian, Gholam-Hossein Majzoobi. Characterization of Al7075-B4C Composite Fabricated by Powder Compaction Techniques Under Different Densification Rates. 10 th International Conference on Composite Science and Technology ICCST/10.
Google Scholar
[20]
A. ALIZADEH, E TAHERI-NASSAJ, H R BAHARVANDI, Preparation and investigation of Al-4 wt% B4C Nano composite powders using mechanical milling. Bull. Mater.Sci., Vol34, No.5, August 2011, pp.1039-1048 © Indian Academy of sciences.
DOI: 10.1007/s12034-011-0158-5
Google Scholar
[21]
Anil Kumar Bodukuri, K. Eswaraiah, Katla Rajendar, V. Sampath. Fabrication of Al-SiC-B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties. Perspectives in Sciences (2016) 8, 428-431.
DOI: 10.1016/j.pisc.2016.04.096
Google Scholar
[22]
M. R. Moradi, A. Moloodi, A. Habibolahzadeh. Fabrication of Nano-Composite Al-B4C foam via Powder Metallurgy-Space Holder Technique. Procedia material science 11 (2015) 553-559.
DOI: 10.1016/j.mspro.2015.11.059
Google Scholar
[23]
S. Ozkaya, A. Canakci. Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling. Powder Technology 297 (2016) 8-16.
DOI: 10.1016/j.powtec.2016.04.004
Google Scholar
[24]
Manohar, G., Pandey, K. M., & Ranjan Maity, S. (2020). Effect of compaction pressure on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques. Materials Today: Proceedings, xxxx, 0–4. https://doi.org/10.1016/j.matpr.2020.05.194.
DOI: 10.1016/j.matpr.2020.05.194
Google Scholar
[25]
Manohar, G., Pandey, K. M., & Maity, S. R. (2020). Aluminium ({AA}7075) Metal Matrix Composite Reinforced with B4C Nano Particles and Effect of Individual Alloying Elements in Al Fabricated by Powder Metallurgy Techniques. Journal of Physics: Conference Series, 1451, 12024. https://doi.org/10.1088/1742-6596/1451/1/012024.
DOI: 10.1088/1742-6596/1451/1/012024
Google Scholar
[26]
Suryakumari, T. S. A., Ranganathan, S., & Shankar, P. (2015). Study on Mechanical Properties of Al 7075 Hybrid Metal Matrix Composites. Applied Mechanics and Materials, 813–814, 230–234. https://doi.org/10.4028/www.scientific.net/amm.813-814.230.
DOI: 10.4028/www.scientific.net/amm.813-814.230
Google Scholar
[27]
Chen, X. G., St-Georges, L., & Roux, M. (2012). Mechanical Behavior of High Boron Content Al-B4C Metal Matrix Composites at Elevated Temperatures. Materials Science Forum, 706–709, 631–637. https://doi.org/10.4028/www.scientific.net/msf.706-709.631.
DOI: 10.4028/www.scientific.net/msf.706-709.631
Google Scholar
[28]
Dasgupta, R., Das, S., & Jha, A. K. (2012). Sliding Wear Behaviour of Al-7075 Based Metal Matrix Composite: Effect of Processing Parameters. Key Engineering Materials, 504–506, 555–560. https://doi.org/10.4028/www.scientific.net/kem.504-506.555.
DOI: 10.4028/www.scientific.net/kem.504-506.555
Google Scholar
[29]
Ravichandran, M., Manikandan, A., & Omkumar, M. S. (2016). Investigations on Properties of Al-B4C Composites Synthesized through Powder Metallurgy Route. Applied Mechanics and Materials, 852, 93–97. https://doi.org/10.4028/www.scientific.net/amm.852.93.
DOI: 10.4028/www.scientific.net/amm.852.93
Google Scholar
[30]
Li, H., Zhang, Y. T., Ameyama, K., Yang, H. J., Liu, Z. G., & Ma, C. L. (2016). Meso-Structure Design of B4C-Al/Al Composites by Hot Pressing. Materials Science Forum, 849, 801–806. https://doi.org/10.4028/www.scientific.net/msf.849.801.
DOI: 10.4028/www.scientific.net/msf.849.801
Google Scholar
[31]
Li, D., Li, Q. L., Li, X. J., & Liu, W. (2014). Research on Microstructure and Mechanical Properties of B4C/Al Composites by Liquid Mental Mixing. Applied Mechanics and Materials, 703, 9–16. https://doi.org/10.4028/www.scientific.net/amm.703.9.
DOI: 10.4028/www.scientific.net/amm.703.9
Google Scholar
[32]
Nie, C.Z., Gu, J.J., Liu, J.L., & Zhang, D. (2007). The Influence of Mixing Manner on Microstructure and Mechanical Performance of B4CP/2024Al Composites. Key Engineering Materials, 351, 195–200. https://doi.org/10.4028/www.scientific.net/kem.351.195.
DOI: 10.4028/www.scientific.net/kem.351.195
Google Scholar
[33]
Ganesh, M., Srinivasan, D., & Vivekanandan, N. (2018). Experimental Investigation on Mechanical and Wear Properties of Al7075-B4C-TiO2 Composite. Nano Hybrids and Composites, 23, 17–23. https://doi.org/10.4028/www.scientific.net/nhc.23.17.
DOI: 10.4028/www.scientific.net/nhc.23.17
Google Scholar
[34]
Mohanty, R.M., & Balasubramanian, K. (2008). Boron Rich Boron Carbide: An Emerging High Performance Material. Key Engineering Materials, 395, 125–142. https://doi.org/10.4028/www.scientific.net/kem.395.125.
DOI: 10.4028/www.scientific.net/kem.395.125
Google Scholar
[35]
Manohar, G., Pandey, K. M., & Maity, S. R. (2020). Effect of china clay on mechanical properties of AA7075/B4C hybrid composite fabricated by powder metallurgy techniques. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.740.
DOI: 10.1016/j.matpr.2020.10.740
Google Scholar