Effect of Buffer Layer on In Situ Temperatures in Laser Cladding

Article Preview

Abstract:

In laser cladding process, generation of high temperature gradients significantly impacts the output coating parameters such as mechanical and microstructural properties. Buffer layer addition between hard alloys cladding shows reduction in crack formation and also dilution rates. The present study is on Insitu temperature monitoring in laser cladding of Stellite 6 alloy with addition of buffer layer, which were compared with direct deposition of Stellite 6. The results show about 17 - 20 % low substrate temperatures with a buffer layer, indicates more uniform cooling of the hard coatings than direct cladding. The increase in laser power measures 35 - 40 % higher temperatures in both the cases due to large heat addition at the clad region. The study provides an insight into the substrate temperature evolution in cladding with and without a buffer layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Qian, Y. Dai, Y. Guo, Microstructure and Wear Resistance of Multi-Layer Ni-Based Alloy cladding coating on 316L SS under different laser power, Materials. 14 (2021) 781. https://doi.org/10.3390/ma14040781.

DOI: 10.3390/ma14040781

Google Scholar

[2] J. Ning, D.E. Sievers, H. Garmestani, S.Y. Liang, G.W. Woodruff, M. Engineering, F. Drive, Analytical modeling of in-situ deformation of part and substrate in laser cladding additive manufacturing of Inconel 625, J. Manuf. Process. 49 (2020) 135–140. https://doi.org/10.1016/j.jmapro.2019.11.013.

DOI: 10.1016/j.jmapro.2019.11.013

Google Scholar

[3] E. Toyserkani, A. Khajepour, S. Corbin, Laser Cladding Laser Cladding, (2017).

DOI: 10.1201/9781420039177

Google Scholar

[4] M. Alizadeh-sh, S.P.H. Marashi, E. Ranjbarnodeh, R. Shoja-razavi, Laser cladding of Inconel 718 powder on a non-weldable substrate : Clad bead geometry-solidification cracking relationship, J. Manuf. Process. 56 (2020) 54–62. https://doi.org/10.1016/j.jmapro.2020.04.045.

DOI: 10.1016/j.jmapro.2020.04.045

Google Scholar

[5] H. Materials, G. Wang, J. Zhang, R. Shu, S. Yang, International Journal of Refractory Metals High temperature wear resistance and thermal fatigue behavior of Stellite- 6 / WC coatings produced by laser cladding with Co-coated WC powder, Int. J. Refract. Metals Hard Mater. 81 (2019) 63–70. https://doi.org/10.1016/j.ijrmhm.2019.02.024.

DOI: 10.1016/j.ijrmhm.2019.02.024

Google Scholar

[6] N. Thawari, C. Gullipalli, J. Kumar, T.V.K. Gupta, Effect of multi-layer laser cladding of Stellite 6 and Inconel 718 materials on clad geometry , microstructure evolution and mechanical properties, Mater. Today Commun. 28 (2021) 102604. https://doi.org/10.1016/j.mtcomm.2021.102604.

DOI: 10.1016/j.mtcomm.2021.102604

Google Scholar

[7] Y. Huang, X. Zeng, Investigation on cracking behavior of Ni-based coating by laser-induction hybrid cladding, Appl. Surf. Sci. 256 (2010) 5985–5992. https://doi.org/10.1016/j.apsusc.2010.03.106.

DOI: 10.1016/j.apsusc.2010.03.106

Google Scholar

[8] J. Leunda, C. Sanz, C. Soriano, Laser cladding strategies for producing WC reinforced NiCr coatings inside twin barrels, Surf. Coatings Technol. 307 (2016) 720–727. https://doi.org/10.1016/j.surfcoat.2016.10.002.

DOI: 10.1016/j.surfcoat.2016.10.002

Google Scholar

[9] N. Thawari, C. Gullipalli, J.K. Katiyar, T.V.K. Gupta, Influence of buffer layer on surface and tribomechanical properties of laser cladded Stellite 6, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 263 (2021) 114799. https://doi.org/10.1016/j.mseb.2020.114799.

DOI: 10.1016/j.mseb.2020.114799

Google Scholar

[10] M. Manjaiah, J.Y. Hascoët, M. Rauch, Effect of process parameters on track geometry, microstructural evolution on 316L stainless steel multi-layer clads, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 259 (2020) 114583. https://doi.org/10.1016/j.mseb.2020.114583.

DOI: 10.1016/j.mseb.2020.114583

Google Scholar

[11] E.M. Stanciu, A. Pascu, M.H. Ţierean, I. Voiculescu, I.C. Roată, C. Croitoru, I. Hulka, Dual Coating Laser Cladding of NiCrBSi and Inconel 718, Mater. Manuf. Process. 31 (2016) 1556–1564. https://doi.org/10.1080/10426914.2015.1103866.

DOI: 10.1080/10426914.2015.1103866

Google Scholar

[12] Kora T Sunny, Rosh V, Nikhil Dinesh, Rosh Luckose And Nevin Paul Zacharia, Implementation of Stainless Steel Buffer Layer for Reducing Crack Propagation on Regulating Valve Disc, Int. J. Eng. Res. V4 (2015) 414–417. https://doi.org/10.17577/ijertv4is040471.

DOI: 10.17577/ijertv4is040471

Google Scholar

[13] A. Suárez, J.M. Amado, M.J. Tobar, A. Yáñez, E. Fraga, M.J. Peel, Study of residual stresses generated inside laser cladded plates using FEM and diffraction of synchrotron radiation, Surf. Coatings Technol. 204 (2010) 1983–1988. https://doi.org/10.1016/j.surfcoat.2009.11.037.

DOI: 10.1016/j.surfcoat.2009.11.037

Google Scholar

[14] D.J. Corbin, A.R. Nassar, E.W. Reutzel, A.M. Beese, P. Michaleris, Effect of substrate thickness and preheating on the distortion of laser deposited ti-6al-4v, J. Manuf. Sci. Eng. Trans. ASME. 140 (2018) 1–9. https://doi.org/10.1115/1.4038890.

DOI: 10.1115/1.4038890

Google Scholar

[15] E.R. Denlinger, J.C. Heigel, P. Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, J. Mater. Process. Technol. 215 (2015) 123–131. https://doi.org/10.1016/j.jmatprotec.2014.07.030.

DOI: 10.1016/j.jmatprotec.2014.07.030

Google Scholar

[16] N. Thawari, C. Gullipalli, A. Chandak, T.V.K. Gupta, In fl uence of laser cladding parameters on distortion , thermal history and melt pool behaviour in multi-layer deposition of stellite 6 : In-situ measurement, J. Alloys Compd. 860 (2021) 157894. https://doi.org/10.1016/j.jallcom.2020.157894.

DOI: 10.1016/j.jallcom.2020.157894

Google Scholar

[17] G. Muvvala, D.P. Karmakar, A.K. Nath, In-process detection of microstructural changes in laser cladding of in-situ Inconel 718 / TiC metal matrix composite coating, J. Alloys Compd. 740 (2018) 545–558. https://doi.org/10.1016/j.jallcom.2017.12.364.

DOI: 10.1016/j.jallcom.2017.12.364

Google Scholar

[18] J.C. Heigel, P. Michaleris, T.A. Palmer, In situ monitoring and characterization of distortion during laser cladding of Inconel® 625, J. Mater. Process. Technol. 220 (2015) 135–145. https://doi.org/10.1016/j.jmatprotec.2014.12.029.

DOI: 10.1016/j.jmatprotec.2014.12.029

Google Scholar

[19] A.J. Dunbar, E.R. Denlinger, J. Heigel, P. Michaleris, P. Guerrier, R. Martukanitz, T.W. Simpson, Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process, Addit. Manuf. 12 (2016) 25–30. https://doi.org/10.1016/j.addma.2016.04.007.

DOI: 10.1016/j.addma.2016.04.007

Google Scholar

[20] H. Liu, M. Li, X. Qin, S. Huang, F. Hong, Numerical simulation and experimental analysis of wide-beam laser cladding, Int. J. Adv. Manuf. Technol. 100 (2019) 237–249. https://doi.org/10.1007/s00170-018-2740-0.

DOI: 10.1007/s00170-018-2740-0

Google Scholar

[21] Z. Yan, W. Liu, Z. Tang, X. Liu, N. Zhang, Z. Wang, H. Zhang, Effect of thermal characteristics on distortion in laser cladding of AISI 316L, J. Manuf. Process. 44 (2019) 309–318. https://doi.org/10.1016/j.jmapro.2019.06.011.

DOI: 10.1016/j.jmapro.2019.06.011

Google Scholar

[22] G. Muvvala, D. Patra Karmakar, A.K. Nath, Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy, Opt. Lasers Eng. 88 (2017) 139–152. https://doi.org/10.1016/j.optlaseng.2016.08.005.

DOI: 10.1016/j.optlaseng.2016.08.005

Google Scholar