Brief Review on Nanotechnology as an Effective Tool for Production of Biofuels

Article Preview

Abstract:

Bio-fuel is world's best substitutes to petroleum fuels, particularly in developing countries, especially in present situation, in which fossil fuels are rapidly decreasing. By emitting greenhouse gases when fossil-based fuels are burned, they pose a serious danger to the environment and human health. Bio-fuel production on a large scale requires longer time and activity due to many constraints in currently available technology and supplementary increased costs. Furthermore, depending on the techniques and materials used, the procedures used to convert diverse feed stocks to the intended output are varied. Nanoparticles (NPs) are one of the most versatile materials in terms of time management, energy efficiency, and selectivity. It is the best way to address the issues of biomass usage. Lots of technology has implemented based on nanoparticles includes metal oxide and magnetic oxides, are engaged to progress bio-fuel production. NPs are useful biofuel additives because of their stability, higher surface area, reusability and catalytic activity. Furthermore, nanomaterials include carbon nanofibers, nanosheets and carbon nanotubes have been discovered to be a stable catalyst for enzyme immobilisation, resulting in improved bio-fuel production. The current research provides a thorough examination of the utilisation of different nanocomposites for bio-fuel production, as well as the significant hurdles and potential prospects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Rai, J.C. Dos Santos, M.F. Soler, P. R. Franco Marcelino, L.P. Brumano, A.P. Ingle, S. Gaikwad, A Gade, S.S. Da Silva. Strategic Role of Nanotechnology for Production of Bioethanol and Biodiesel. Nanotechnol. Rev. 5, (2016) 231–250.

DOI: 10.1515/nano.0034.2015-0069

Google Scholar

[2] K. Bhattarai, W.M. Stalick, S. Mckay, G. Geme, N. Bhattarai. Biofuel: An Alternative to Fossil Fuel for Alleviating World Energy and Economic Crises. J. Environ. Sci. Health Part A Toxic 46, (2011) 1424–1442.

DOI: 10.1080/10934529.2011.607042

Google Scholar

[3] E.A. Shalaby. Biofuel: Sources, Extraction and Determination. In Liquid, Gaseous and Solid Biofuels; Fang, Z., Ed, IntechOpen: Rijeka, Croatia, (2013).

Google Scholar

[4] J. Folaranmi. Production of Biodiesel (B100) from Jatropha Oil Using Sodium Hydroxide as Catalyst. J. Pet. Eng. 2013, (2013) 1–6.

DOI: 10.1155/2013/956479

Google Scholar

[5] Forde, C.J, Meaney, M, Carrigan, J.B, Mills, C, Boland, S, Hernon, A. Biobased Fats (Lipids) and Oils from Biomass as a Source of Bioenergy. Bioenergy Res. Adv. Appl. (2014) 185–201.

DOI: 10.1016/b978-0-444-59561-4.00012-7

Google Scholar

[6] M. Ahmad, M. Ajab, M. Zafar, S. Sult. Biodiesel from Non Edible Oil Seeds: A Renewable Source of Bioenergy. Econ. Eff. Biofuel Prod. (2011), (2005).

DOI: 10.5772/24687

Google Scholar

[7] R. Mohadi, A.H. Harahap, N. Hidayati, A. Lesbani. Transesterification of Tropical Edible Oils to Biodiesel Using Catalyst From Scylla Serrata. Sriwij. J. Environ. 1, (2016), 24–27.

DOI: 10.22135/sje.2016.1.2.24-27

Google Scholar

[8] M. Thirumarimurugan, V. M, Sivakumar, A.M. Xavier, D. Prabhakaran, T. Kannadasan. Preparation of Biodiesel from Sunflower Oil by Transesterification. IJBBB (2012), 441–444.

DOI: 10.7763/ijbbb.2012.v2.151

Google Scholar

[9] B. Ahmmed, O.U. Samaddar, K.Q. Kibria. Production of Biodiesel from Used Vegetable Oils Production of Biodiesel from Used Vegetable Oils. Int. J. Sci. Res. Sci. Technol. (2019), 6.

DOI: 10.3989/gya.2008.v59.i1.494

Google Scholar

[10] R.O. Do Nascimento, L.M. Rebelo, E. Sacher. Physicochemical Characterizations of Nanoparticles Used for Bioenergy and Biofuel Production. In Nanotechnology for Bioenergy and Biofuel Production; Rai, M., da Silva, S.S., Eds, Springer: Cham, Switzerland, 2017; p.173–191. ISBN 978-3-319-45459-7.

DOI: 10.1007/978-3-319-45459-7_8

Google Scholar

[11] P.K. Dikshit, J. Kumar, A.K. Das, S. Sadhu, S, Sharma, S, Singh, P.K. Gupta, B.S Kim. Green Synthesis of Metallic Nanoparticles: Applications and Limitations. Catalysts, 11, (2021), 902.

DOI: 10.3390/catal11080902

Google Scholar

[12] K. Saoud. Nanocatalyst for Biofuel Production: A Review. In Green Nanotechnology for Biofuel Production; Srivastava, N., Srivastava, M., Pandey, H., Mishra, P.K., Ramteke, P.W., Eds, Springer: Cham, Switzerland, 2018; p.39–62. ISBN 978-3-319-75052-1.

DOI: 10.1007/978-3-319-75052-1

Google Scholar

[13] N.Singh, B.S. Dhanya, M.L. Verma. Nano-Immobilized Biocatalysts and Their Potential Biotechnological Applications in Bioenergy Production. Mater. Sci. Energy Technol. 3, (2020), 808–824.

DOI: 10.1016/j.mset.2020.09.006

Google Scholar

[14] Ali, S, Shafique, O, Mahmood, S, Mahmood, T, Khan, B.A, Ahmad, I. Biofuels Production from Weed Biomass Using Nanocatalyst Technology. Biomass Bioenergy 139, (2020), 105595.

DOI: 10.1016/j.biombioe.2020.105595

Google Scholar

[15] S.T, Hussain, S.A. Ali, A. Bano, T Mahmood . Use of Nanotechnology for the Production of Biofuels from Butchery Waste. Int. J. Phys. Sci. 6, (2011), 7271–7279.

Google Scholar

[16] A.H. Hirani, N. Javed, M. Asif, S.K. Basu, A. Kumar A Review on First- and Second-Generation Biofuel Productions. In Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology; Kumar, A., Ogita, S., Yau, Y.-Y., Eds, Springer: New Delhi, India, 2018; p.141–154. ISBN 978-81-322-3763-1.

DOI: 10.1007/978-81-322-3763-1_8

Google Scholar

[17] M. Puri, C.J. Barrow, M.L. Verma. Enzyme Immobilization on Nanomaterials for Biofuel Production. Trends Biotechnol. 31, (2013), 215–216.

DOI: 10.1016/j.tibtech.2013.01.002

Google Scholar

[18] N.Shakeel, M.I. Ahamed, Ahmed, M.M. Rahman, A.M .Asiri. Functionalized Magnetic Nanoparticle-Reduced Graphene Oxide Nanocomposite for Enzymatic Biofuel Cell Applications. Int. J. Hydrog. Energy 44, (2019), 28294–28304.

DOI: 10.1016/j.ijhydene.2019.09.037

Google Scholar

[19] J. Dantas, E. Leal, A.B. Mapossa, D.R. Cornejo, A.C.F.M. Costa. Magnetic nanocatalysts of Ni0.5Zn0.5Fe2O4 doped with Cu and performance evaluation in transesterification reaction for biodiesel production. Fuel 191, (2017), 463–471.

DOI: 10.1016/j.fuel.2016.11.107

Google Scholar

[20] E. Cherian, M. Dharmendirakumar, G Baskar. Immobilization of Cellulase onto MnO2 Nanoparticles for Bioethanol Production by Enhanced Hydrolysis of Agricultural Waste. Chin. J. Catal. 36, (2015), 1223–1229.

DOI: 10.1016/s1872-2067(15)60906-8

Google Scholar

[21] V. Ivanova, P. Petrova, J. Hristov. Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-Coated Magnetic Nanoparticles. arXiv preprint 2011, arXiv:1105.0619.

Google Scholar

[22] K.H. Lee, I.S. Choi, Y.-G. Kim, D.-J. Yang, H.-J. Bae. Enhanced Production of Bioethanol and Ultrastructural Characteristics of Reused Saccharomyces Cerevisiae Immobilized Calcium Alginate Beads. Bioresour. Technol. 102, (2011), 8191–8198.

DOI: 10.1016/j.biortech.2011.06.063

Google Scholar

[23] S. Duraiarasan, S.A. Razack, A. Manickam, A. Munusamy, M.B. Syed, M.Y. Ali, G.M. Ahmed, M.S. Mohiuddin, Direct Conversion of Lipids from Marine Microalga C. Salina to Biodiesel with Immobilised Enzymes Using Magnetic Nanoparticle. J. Environ. Chem. Eng. 4, (2016), 1393–1398.

DOI: 10.1016/j.jece.2015.12.030

Google Scholar

[24] A. Wang, J. Wang, C. Lu, M. Xu, J. Lv, X. Wu. Esterification for Biofuel Synthesis over an Eco-Friendly and Efficient Kao- 610 linite-Supported SO42-/ZnAl2O4 Macroporous Solid Acid Catalyst. Fuel 234, (2018), 430–440.

DOI: 10.1016/j.fuel.2018.07.041

Google Scholar

[25] S. Aquino Neto, T. S. Almeida, L. M. Palma, S.D. Minteer, A. R. De Andrade .Hybrid Nanocatalysts Containing Enzymes and Metallic Nanoparticles for Ethanol/O2 Biofuel Cell. J. Power Sources 259, (2014), 25–32.

DOI: 10.1016/j.jpowsour.2014.02.069

Google Scholar

[26] Z.D. Yigezu, K. Muthukumar. Catalytic Cracking of Vegetable Oil with Metal Oxides for Biofuel Production. Energy Convers. Manag. 84, (2014), 326–333.

DOI: 10.1016/j.enconman.2014.03.084

Google Scholar

[27] M. Akia, F. Yazdani, E. Motaee, D. Han, H. Arandiyan. A Review on Conversion of Biomass to Biofuel by Nanocatalysts. Biofuel Res. J. 1, (2014), 16–25.

DOI: 10.18331/brj2015.1.1.5

Google Scholar

[28] V. Ganesh, A. Pandikumar, M. Alizadeh, R. Kalidoss, K. Baskar, Rational design and fabrication of surface tailored low dimensional Indium Gallium Nitride for photoelectrochemical water cleavage, Int. J. Hydrog. Energy., 45 (2020) 8198-8222.

DOI: 10.1016/j.ijhydene.2020.01.048

Google Scholar

[29] A. Nzila. Mini Review: Update on Bioaugmentation in Anaerobic Processes for Biogas Production. Anaerobe, 46, (2017) 3–12.

DOI: 10.1016/j.anaerobe.2016.11.007

Google Scholar

[30] X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli. Biodiesel Production from Heterotrophic Microalgae through Transesterification and Nanotechnology Application in the Production. Renew. Sustain. Energy Rev. 26, (2013), 216–223.

DOI: 10.1016/j.rser.2013.05.061

Google Scholar

[31] A. Demirbas. Biofuels Sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projections. Energy Convers. Manag. 49, (2008) 2106–2116.

DOI: 10.1016/j.enconman.2008.02.020

Google Scholar