Critical Review on Recent Advancement in Nanotechnology for Biomedical Application

Article Preview

Abstract:

The new update in advancement in nanotechnology has engaged to develop a new nanomaterial with a different functional property. The morphology modification of nanoparticles has exhibited excellent physio-chemical properties such as high reactivity and absorption rate, photochemical and magnetic property, and larger surface area. Moreover, biomedical application of nanoparticles are yet a hard tool to use for therapeutic application owing to its limits such as Pitiable target specificity, bio-compatibility, low photostability, toxicity to organically, poor blood retention and cellular absorption. Therefore advancement in nanotechnology is required to overcome these defects. In this background, new nanomaterials are identified with suitable biological, chemical and physical properties, which suits the required demands of the application. In this mini-review, we have covered the recent focuses of nanomaterials for biomedical application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Caulfield, B. Reginatto, P. Slevin, Not all sensors are created equal: a framework for evaluating human performance measurement technologies, NPJ digital medicine, 2 (2019)1-8.

DOI: 10.1038/s41746-019-0082-4

Google Scholar

[2] P. Mohankumar, J. Ajayan, R. Yasodharan, P. Devendran, R. Sambasivam, A review of micromachined sensors for automotive applications, Measurement, (2019).

DOI: 10.1016/j.measurement.2019.03.064

Google Scholar

[3] H. Huang, P.-Y. Chen, C.-H. Hung, R. Gharpurey, D. Akinwande, A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring, Scientific reports, 6 (2016) 1-10.

DOI: 10.1038/srep18795

Google Scholar

[4] J. Ponmozhi, C. Frias, T. Marques, O. Frazão, Smart sensors/actuators for biomedical applications, Measurement, 45 (2012) 1675-1688.

DOI: 10.1016/j.measurement.2012.02.006

Google Scholar

[5] C.L. Ng, M.B.I. Reaz, Evolution of a capacitive electromyography contactless biosensor: Design and modelling techniques, Measurement, (2019).

DOI: 10.1016/j.measurement.2019.05.031

Google Scholar

[6] S. Updike, G. Hicks, The enzyme electrode, Nature, 214 (1967) 986-988.

DOI: 10.1038/214986a0

Google Scholar

[7] A. Rachkov, S. McNiven, A. El'skaya, K. Yano, I. Karube, Fluorescence detection of βestradiol using a molecularly imprinted polymer, Analytica chimica acta, 405 (2000) 23- 29.

DOI: 10.1016/s0003-2670(99)00743-6

Google Scholar

[8] S. Kröger, A.P. Turner, K. Mosbach, K. Haupt, Imprinted polymer-based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes, Analytical Chemistry, 71 (1999) 3698-3702.

DOI: 10.1021/ac9811827

Google Scholar

[9] S. McNiven, M. Kato, R. Levi, K. Yano, I. Karube, Chloramphenicol sensor based on an in situ imprinted polymer, Analytica chimica acta, 365 (1998) 69-74.

DOI: 10.1016/s0003-2670(98)00096-8

Google Scholar

[10] I. Karube, T. Matsunaga, S. Suzuki, T. Asano, S. Itoh, Immobilized antibody-based flow type enzyme immunosensor for determination of human serum albumin, Journal of Biotechnology, 1 (1984) 279-286.

DOI: 10.1016/0168-1656(84)90019-1

Google Scholar

[11] H. Muguruma, I. Karube, Plasma-polymerized films for biosensors, TrAC Trends in Analytical Chemistry, 18 (1999) 62-68. [13] M.D. Mitsubayashi K, Yamada T, Kawase T, Karube I, In: Eur Conf Solid-State Transducers, Prague, Czech Republic, 2002, p.772–775.

DOI: 10.1016/s0165-9936(98)00098-3

Google Scholar

[12] C. O'sullivan, G. Guilbault, Commercial quartz crystal microbalances–theory and applications, Biosensors and bioelectronics, 14 (1999) 663-670.

DOI: 10.1016/s0956-5663(99)00040-8

Google Scholar

[13] B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing, Sensors and actuators, 4 (1983) 299-304.

DOI: 10.1016/0250-6874(83)85036-7

Google Scholar

[14] J. Craig Venter, M. Adams, E. Myers, P. Li, R. Mural, G. Sutton, H. Smith, M. Yandell, C. Evans, R. Holt, The sequence of the human genome, Science, 291 (2001) 1304-1351.

Google Scholar

[15] E. Lander, L. Linton, B. Birren, C. Nusbaum, M. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, Consortium IHGS, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, et al: Initial sequencing and analysis of the human genome. Nature, 409 (2001) 860-921.

Google Scholar

[16] A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer, Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip, Journal of Chromatography A, 593 (1992) 253-258.

DOI: 10.1016/0021-9673(92)80293-4

Google Scholar

[17] S.-W. Tsai, M. Loughran, A. Hiratsuka, K. Yano, I. Karube, Application of plasmapolymerized films for isoelectric focusing of proteins in a capillary electrophoresis chip, Analyst, 128 (2003) 237-244.

DOI: 10.1039/b207871f

Google Scholar

[18] Yousaf, T.; Dervenoulas, G.; Politis, M. Advances in MRI Methodology. Int. Rev. Neurobiol. 2018, 141, 31–76.

Google Scholar

[19] Hemond, C.C.; Bakshi, R. Magnetic resonance imaging in multiple sclerosis. Cold Spring Harb. Perspect. Med.2018, 8, 1–21.

DOI: 10.1101/cshperspect.a028969

Google Scholar

[20] Behzadi, A.H.; Farooq, Z.; Newhouse, J.H.; Prince, M.R. MRI and CT contrast media extravasation. Medcine2018, 97 S.H. Lee, J.H. Sung, T.H. Park, Nanomaterial-based biosensor as an emerging tool for biomedical applications, Annals of biomedical engineering, 40 (2012) 1384-1397.

DOI: 10.1007/s10439-011-0457-4

Google Scholar

[21] Lux, J.; Sherry, A.D. Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo. Curr. Opin. Chem. Biol. 2018, 45, 121–130.

DOI: 10.1016/j.cbpa.2018.04.006

Google Scholar

[22] Liu, X.; Madhankumar, A.B.; Miller, P.A.; Duck, K.A.; Hafenstein, S.; Rizk, E.; Slagle-Webb, B.; Sheehan, J.M. Connor, J.R.; Yang, Q.X. MRI contrast agent for targeting glioma: Interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro. Oncol. 2016, 18, 691–699.

DOI: 10.1093/neuonc/nov263

Google Scholar

[23] McMahon, M.T.; Bulte, J.W.M. Two decades of dendrimers as versatile MRI agents: A tale with and without metals. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1496.

DOI: 10.1002/wnan.1496

Google Scholar

[24] Moghimi, H.; Zohdiaghdam, R.; Riahialam, N.; Behrouzkia, Z. The assessment of toxicity characteristics of cellular uptake of paramagnetic nanoparticles as a new magnetic resonance imaging contrast agent. Iran. J.Pharm. Res. 2019, 18, 2083–(2092).

Google Scholar

[25] Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. BioMetals 2016, 29, 365–376.

DOI: 10.1007/s10534-016-9931-7

Google Scholar

[26] Layne, K.A.; Dargan, P.I.; Archer, J.R.H.; Wood, D.M. Gadolinium deposition and the potential for toxicological sequelae – A literature review of issues surrounding gadolinium-based contrast agents. Br. J. Clin. Pharmacol.

DOI: 10.1111/bcp.13718

Google Scholar

[27] Dong, Y.C.; Hajfathalian, M.; Maidment, P.S.N.; Hsu, J.C.; Naha, P.C.; Si-Mohamed, S.; Breuilly, M.; Kim, J.;Chhour, P.; Douek, P.; et al. Effffect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci. Rep. 2019, 9, 1–13.

DOI: 10.1038/s41598-019-50332-8

Google Scholar

[28] Silvestri, A.; Zambelli, V.; Ferretti, A.M.; Salerno, D.; Bellani, G.; Polito, L. Design of functionalized gold nanoparticle probes for computed tomography imaging. Contrast Media Mol. Imaging 2016, 11, 405–414.

DOI: 10.1002/cmmi.1704

Google Scholar

[29] Nakagawa, T.; Gonda, K.; Kamei, T.; Cong, L.; Hamada, Y.; Kitamura, N.; Tada, H.; Ishida, T.; Aimiya, T.;Furusawa, N.; et al. X-ray computed tomography imaging of a tumor with high sensitivity using gold nanoparticles conjugated to a cancer-specifific antibody via polyethylene glycol chains on their surface.Sci. Technol. Adv. Mater. 2016, 17, 387–397.

DOI: 10.1080/14686996.2016.1194167

Google Scholar

[30] Mok, P.L.; Leow, S.N.; Koh, A.E.H.; Mohd Nizam, H.H.; Ding, S.L.S.; Luu, C.; Ruhaslizan, R.; Wong, H.S. Halim, W.H.W.A.; Ng, M.H.; et al. Micro-computed tomography detection of gold nanoparticle-labelled mesenchymal stem cells in the rat subretinal layer. Int. J. Mol. Sci. 2017, 18, 345.

DOI: 10.3390/ijms18020345

Google Scholar

[31] Farooq Aziz, A.I.; Nazir, A.; Ahmad, I.; Bajwa, S.Z.; Rehman, A.; Diallo, A.; Khan, W.S. Novel route synthesis of porous and solid gold nanoparticles for investigating their comparative performance as contrast agent in computed tomography scan and effffect on liver and kidney function. Int. J. Nanomed. 2017, 12, 1555.

DOI: 10.2147/ijn.s127996

Google Scholar

[32] Chen, J.; Yang, X.Q.; Qin, M.Y.; Zhang, X.S.; Xuan, Y.; Zhao, Y.D. Hybrid nanoprobes of bismuth sulfifidenanoparticles and CdSe/ZnS quantum dots for mouse computed tomography/flfluorescence dual mode imaging. J. Nanobiotechnol. 2015, 13, 1–10.

DOI: 10.1186/s12951-015-0138-9

Google Scholar

[33] Santos, B.S.; Ferreira, M.J. Positron emission tomography in ischemic heart disease. Rev. Port. Cardiol. 2019,38, 599–608.

Google Scholar

[34] Lee, S.B.; Lee, S.W.; Jeong, S.Y.; Yoon, G.; Cho, S.J.; Kim, S.K.; Lee, I.K.; Ahn, B.C.; Lee, J.; Jeon, Y.H. Engineering of radioiodine-labeled gold core-shell nanoparticles as effiffifficient nuclear medicine imaging agents for traffiffifficking of dendritic cells. ACS Appl. Mater. Interfaces 2017, 9, 8480–8489.

DOI: 10.1021/acsami.6b14800

Google Scholar

[35] Chakravarty, R.; Hong, H.; Cai, W. Image-guided drug delivery with single-photon emission computed tomography: A review of literature. Curr. Drug Targets 2015, 16, 592–609.

DOI: 10.2174/1389450115666140902125657

Google Scholar

[36] Estudiante-Mariquez, O.J.; Rodríguez-Galván, A.; Ramírez-Hernández, D.; Contreras-Torres, F.F. Medina, L.A. Technetium-radiolabeled mannose-functionalized gold nanoparticles as nanoprobes for sentinel lymph node detection. Molecules 2020, 25, (1982).

DOI: 10.3390/molecules25081982

Google Scholar

[37] Wang, Y.; Li, Y.; Wei, F.; Duan, Y. Optical imaging paves the way for autophagy research. Trends Biotechnol.2017, 35, 1181–1193.

DOI: 10.1016/j.tibtech.2017.08.006

Google Scholar

[38] Wu, W.; Yang, Y.Q.; Yang, Y.; Yang, Y.M.; Wang, H.; Zhang, K.Y.; Guo, L.; Ge, H.F.; Liu, J.; Feng, H. An organic NIR-II nanoflfluorophore with aggregation-induced emission characteristics for in vivo flfluorescence imaging.Int. J. Nanomed. 2019, 14, 3571–3582.

DOI: 10.2147/ijn.s198587

Google Scholar

[39] K. Wise, R. Weissman, Thin films of glass and their application to biomedical sensors, Medical and biological engineering, 9 (1971) 339-350.

DOI: 10.1007/bf02474087

Google Scholar

[40] J. Shin, Y. Yan, W. Bai, Y. Xue, P. Gamble, L. Tian, I. Kandela, C.R. Haney, W. Spees, Y. Lee, Bioresorbable pressure sensors protected with thermally grown silicon dioxide for 3 (2019) 37-46.

DOI: 10.1038/s41551-018-0300-4

Google Scholar

[41] H. Tao, S.-W. Hwang, B. Marelli, B. An, J.E. Moreau, M. Yang, M.A. Brenckle, S. Kim, D.L. Kaplan, J.A. Rogers, Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement, Proceedings of the National Academy of Sciences, 111 (2014) 17385-17389.

DOI: 10.1073/pnas.1407743111

Google Scholar

[42] S.-K. Kang, R.K. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Bioresorbable silicon electronic sensors for the brain, Nature, 530 (2016) 71-76.

DOI: 10.1038/nature16492

Google Scholar

[43] G. Appelboom, E. Camacho, M.E. Abraham, S.S. Bruce, E.L. Dumont, B.E. Zacharia, R. D'Amico, J. Slomian, J.Y. Reginster, O. Bruyère, Smart wearable body sensors for patient self-assessment and monitoring, Archives of public health, 72 (2014) 28.

DOI: 10.1186/2049-3258-72-28

Google Scholar

[44] L. Sheng, S. Teo, J. Liu, Liquid-metal-painted stretchable capacitor sensors for wearable healthcare electronics, Journal of Medical and Biological Engineering, 36 (2016) 265-272.

DOI: 10.1007/s40846-016-0129-9

Google Scholar

[45] S. Carreiro, K. Wittbold, P. Indic, H. Fang, J. Zhang, E.W. Boyer, Wearable biosensors to detect physiologic change during opioid use, Journal of medical toxicology, 12 (2016) 255-262.

DOI: 10.1007/s13181-016-0557-5

Google Scholar

[46] J.C. Yeo, C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications, Microsystems & Nanoengineering, 2 (2016) 1-19.

DOI: 10.1038/micronano.2016.43

Google Scholar

[47] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chemical Society Reviews, 39 (2010) 1747-1763.

DOI: 10.1039/b714449k

Google Scholar