Review on Friction Stir Welding of Dissimilar Metals

Article Preview

Abstract:

Friction stir welding (FSW) is a solid–state joining process that is increasingly being used in various industrial applications due to its numerous advantages over conventional welding techniques. FSW uses a non-consumable rotating tool to generate frictional heat and plasticize the material in the joint, resulting in a defect-free, high-quality bond between two pieces of metal without the need for any filler material or shielding gas. The process is particularly well-suited for welding lightweight and high-strength materials, such as aluminium, magnesium and titanium and is known for its ability to produce joints with superior mechanical properties, including high fatigue strength and improved corrosion resistance. This paper addresses the need for future development in Friction Stir Welding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li, S., Chen, Y., Zhou, X., Kang, J., Huang, Y., & Deng, H. (2019). High-strength titanium alloy/steel butt joint produced via friction stir welding. Materials Letters, 234, 155-158.

DOI: 10.1016/j.matlet.2018.09.094

Google Scholar

[2] Li, S., Chen, Y., Kang, J., Huang, Y., Gianetto, J. A., & Yin, L. (2019). Interfacial microstructures and mechanical properties of dissimilar titanium alloy and steel friction stir butt-welds. Journal of Manufacturing Processes, 40, 160-168.

DOI: 10.1016/j.jmapro.2019.03.015

Google Scholar

[3] Gotawala, N., & Shrivastava, A. (2020). Microstructural analysis and mechanical behavior of SS 304 and titanium joint from friction stir butt welding. Materials Science and Engineering: A, 789, 139658.

DOI: 10.1016/j.msea.2020.139658

Google Scholar

[4] Ishida, K., Gao, Y., Nagatsuka, K., Takahashi, M., & Nakata, K. (2015). Microstructures and mechanical properties of friction stir welded lap joints of commercially pure titanium and 304 stainless steel. Journal of Alloys and Compounds, 630, 172-177.

DOI: 10.1016/j.jallcom.2015.01.004

Google Scholar

[5] Wu, A., Song, Z., Nakata, K., Liao, J., & Zhou, L. (2015). Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061. Materials & Design, 71, 85-92.

DOI: 10.1016/j.matdes.2014.12.015

Google Scholar

[6] Dressler, U., Biallas, G., & Mercado, U. A. (2009). Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Materials Science and Engineering: A, 526(1-2), 113-117.

DOI: 10.1016/j.msea.2009.07.006

Google Scholar

[7] Song, Z., Nakata, K., Wu, A., Liao, J., & Zhou, L. (2014). Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. Materials & Design, 57, 269-278.

DOI: 10.1016/j.matdes.2013.12.040

Google Scholar

[8] Li, B., Zhang, Z., Shen, Y., Hu, W., & Luo, L. (2014). Dissimilar friction stir welding of Ti–6Al–4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties. Materials & Design, 53, 838-848.

DOI: 10.1016/j.matdes.2013.07.019

Google Scholar

[9] Kar, A., Choudhury, S. K., Suwas, S., & Kailas, S. V. (2018). Effect of niobium interlayer in dissimilar friction stir welding of aluminum to titanium. Materials Characterization, 145, 402-412.

DOI: 10.1016/j.matchar.2018.09.007

Google Scholar

[10] Kar, A., Suwas, S., & Kailas, S. V. (2018). Two-pass friction stir welding of aluminum alloy to titanium alloy: a simultaneous improvement in mechanical properties. Materials Science and Engineering: A, 733, 199-210.

DOI: 10.1016/j.msea.2018.07.057

Google Scholar

[11] Chen, Y., Liu, C., & Liu, G. (2011). Study on the joining of titanium and aluminum dissimilar alloys by friction stir welding. The Open Materials Science Journal, 5(1).

DOI: 10.2174/1874088x01105010256

Google Scholar

[12] Fu, B., Qin, G., Li, F., Meng, X., Zhang, J., & Wu, C. (2015). Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. Journal of Materials Processing Technology, 218, 38-47.

DOI: 10.1016/j.jmatprotec.2014.11.039

Google Scholar

[13] Kwon, Y. J., Shigematsu, I., & Saito, N. (2008). Dissimilar friction stir welding between magnesium and aluminum alloys. Materials Letters, 62(23), 3827-3829.

DOI: 10.1016/j.matlet.2008.04.080

Google Scholar

[14] Azizieh, M., Alavijeh, A. S., Abbasi, M., Balak, Z., & Kim, H.S. (2016). Mechanical properties and microstructural evaluation of AA1100 to AZ31 dissimilar friction stir welds. Materials Chemistry and Physics, 170, 251-260.

DOI: 10.1016/j.matchemphys.2015.12.046

Google Scholar

[15] Liang, Z., Chen, K., Wang, X., Yao, J., Yang, Q., Zhang, L., & Shan, A. (2013). Effect of tool offset and tool rotational speed on enhancing mechanical property of Al/Mg dissimilar FSW joints. Metallurgical and Materials Transactions A, 44, 3721-3731.

DOI: 10.1007/s11661-013-1700-4

Google Scholar

[16] Muthu, M. F. X., & Jayabalan, V. (2015). Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints. Journal of Materials Processing Technology, 217, 105-113.

DOI: 10.1016/j.jmatprotec.2014.11.007

Google Scholar

[17] Fotouhi, Y., Rasaee, S., Askari, A., & Bisadi, H. (2014). Effect of transverse speed of the tool on microstructure and mechanical properties in dissimilar butt friction stir welding of al5083–copper sheets. Engineering Solid Mechanics, 2(3), 239-246.

DOI: 10.5267/j.esm.2014.3.001

Google Scholar

[18] Wang, H., Qin, G., Geng, P., & Ma, X. (2020). Interfacial microstructures and mechanical properties of friction welded Al/steel dissimilar joints. Journal of Manufacturing Processes, 49, 18-25.

DOI: 10.1016/j.jmapro.2019.11.009

Google Scholar

[19] Yazdipour, A., & Heidarzadeh, A. (2016). Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys. The International Journal of Advanced Manufacturing Technology, 87, 3105-3112.

DOI: 10.1007/s00170-016-8705-2

Google Scholar

[20] Derazkola HA, Khodabakhshi F. Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel. Int J Adv Manuf Technol 2019; 102:4383–95

DOI: 10.1007/s00170-019-03544-1

Google Scholar

[21] Xu, R. Z., Ni, D. R., Yang, Q., Xiao, B. L., Liu, C. Z., & Ma, Z. Y. (2018). Influencing mechanism of Al-containing Zn coating on interfacial microstructure and mechanical properties of friction stir spot welded Mg–steel joint. Materials Characterization, 140, 197-206.

DOI: 10.1016/j.matchar.2018.04.011

Google Scholar

[22] Amini, A., Asadi, P., & Zolghadr, P. (2014). Friction stir welding applications in industry. Advances in friction-stir welding and processing, 671-722.

DOI: 10.1533/9780857094551.671

Google Scholar

[23] Ronneteg, U. (2018, June). Friction stir welding of copper and its NDT-From novelty to highly-developed. In Proc. 12th Eur. Conf. Non-Destructive Test. (pp.11-15).

Google Scholar

[24] Murray, D.L. (2005). Friction Stir Processing of Nickel-Aluminum Propeller Bronze in Comparison to Fusion Welds. NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF MECHANICAL AND ASTRONAUTICAL ENGINEERING.

Google Scholar