Dissimilar Welding of Nickel-Based Superalloy - A Review

Article Preview

Abstract:

Fundamental investigation of mechanical properties on different types of dissimilar welded joints was described in this paper. Dissimilar metal welding was generally employed in chemical and petrochemical plants, oil and gas industries, nuclear power plants and aerospace industries etc. For enriching the structural integrity of aerospace industries, material with high temperature resistance and high corrosion resistance is needed. For fulfilling the above criteria, Inconel 718 (IN 718) was selected due to its felicitous strengths such as yield, tensile, and creep at high temperatures with significant corrosion properties. This paper reviews the different welding processes and the impact they have on mechanical properties, as well as some difficulties related to welding dissimilar metals. Gas Tungsten Arc Welding (GTAW) process comprises high micro-hardness and tensile strength properties during dissimilar welding of IN 718. SS 410 and Inconel 625 materials hold high micro-hardness and tensile strength values respectively. The effect of IN 718 filler metal has also been discussed in this paper. Some of the dissimilar welding defects can be eliminated by IN 718 filler metal. This paper will give better directions to the researchers to focus on future studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jewett, R. P., & Halchak, J. A. (1991). The Use of Alloy 718 in the Space Shuttle Main Engine. 749–760

DOI: 10.7449/1991/superalloys_1991_749_760

Google Scholar

[2] Ramkumar, K. D., Abraham, W. S., Viyash, V., Arivazhagan, N., & Rabel, A. M. (2017). Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. Journal of Manufacturing Processes, 25, 306–322

DOI: 10.1016/j.jmapro.2016.12.018

Google Scholar

[3] Winowlin Jappes, J. T., Ajithram, A., Adamkhan, M., & Reena, D. (2022). Welding on Ni based super alloys – A review. Materials Today: Proceedings, 60, 1656–1659

DOI: 10.1016/j.matpr.2021.12.208

Google Scholar

[4] Prakash, E., Chandrasekar, G., Beemaraj, R. K., Ramesh, M., & Sundaresan, R. (2022). Investigate the welding of Inconel 718 and Inconel 600 in friction stir welding. Materials Today: Proceedings, 60, 1385-1388

DOI: 10.1016/j.matpr.2021.10.305

Google Scholar

[5] Raj, S., & Biswas, P. (2022). Mechanical and microstructural characterizations of friction stir welded dissimilar butt joints of Inconel 718 and AISI 204Cu austenitic stainless steel. Materials Characterization, 185

DOI: 10.1016/j.matchar.2022.111763

Google Scholar

[6] Tabaie, S., Rézaï-Aria, F., Flipo, B. C. D., & Jahazi, M. (2022). Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730TM: Evolution of strengthening phases. Journal of Materials Science and Technology, 96, 248–261

DOI: 10.1016/j.jmst.2021.03.086

Google Scholar

[7] Hung Tra, T., & Sakaguchi, M. (2016). High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures. Journal of Science: Advanced Materials and Devices, 1(4), 501–506

DOI: 10.1016/j.jsamd.2016.08.009

Google Scholar

[8] Anandaraj, J. A., Rajakumar, S., Balasubramanian, V., & Petley, V. (2021). Investigation on mechanical and metallurgical properties of rotary friction welded In718/SS410 dissimilar materials. Materials Today: Proceedings, 45, 962–966

DOI: 10.1016/j.matpr.2020.03.040

Google Scholar

[9] J, A. A., Rajakumar, S., Balasubramanian, V., & Kavitha, S. (2021). Influence of process parameters on hot tensile behavior of rotary friction welded In 718/AISI 410 dissimilar joints. CIRP Journal of Manufacturing Science and Technology, 35, 830–838

DOI: 10.1016/j.cirpj.2021.09.010

Google Scholar

[10] Madhankumar, S., Ashwin, S., Ajai Robert, J., Clifford Francis, J., Bavan Kalyan, R., Krithik Raj, A., & Joel Anton, W. (2020). Experimental investigation on ultimate tensile strength of laser butt welded inconel 718 alloy and 2205 duplex stainless steel. Materials Today: Proceedings, 45, 6783–6787

DOI: 10.1016/j.matpr.2020.12.670

Google Scholar

[11] Adomako, N. K., Park, H. J., Cha, S. C., Lee, M., & Kim, J. H. (2021). Microstructure evolution and mechanical properties of the dissimilar joint between IN718 and STS304. Materials Science and Engineering A, 799 (August 2020), 140262

DOI: 10.1016/j.msea.2020.140262

Google Scholar

[12] Hu, Y., Wu, L., Zhou, P., Ye, Y., & Wang, B. (2021). Fiber laser welding of Ti–6Al–4V to Inconel 718 bimetallic structure via Cu/Ta multi-interlayer. Vacuum, 192(May), 110461

DOI: 10.1016/j.vacuum.2021.110461

Google Scholar

[13] K., D. R., Sidharth, D., Phani, P. P., Rajendran, R., K., G. M., & Narayanan, S. (2019). Microstructure and properties of inconel 718 and AISI 416 laser welded joints. Journal of Materials Processing Technology, 266(October 2018), 52–62

DOI: 10.1016/j.jmatprotec.2018.10.039

Google Scholar

[14] Caiazzo, F., Alfieri, V., Sergi, V., Schipani, A., & Cinque, S. (2013). Dissimilar autogenous disk-laser welding of Haynes 188 and Inconel 718 superalloys for aerospace applications. International Journal of Advanced Manufacturing Technology, 68(5–8), 1809–1820

DOI: 10.1007/s00170-013-4979-9

Google Scholar

[15] Sun, W., Xin, J., Wang, S., Chen, Y., & Huang, Y. (2021). Effect of deposited layer thickness on the microstructure and mechanical properties of IC10 single-crystal Ni3Al-based alloy electron beam-welded joint. Journal of Materials Research and Technology, 11, 1206–1219

DOI: 10.1016/j.jmrt.2021.01.115

Google Scholar

[16] Xu, X., Ganguly, S., Ding, J., Seow, C. E., & Williams, S. (2018). Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing. Materials and Design, 160, 1042–1051

DOI: 10.1016/j.matdes.2018.10.038

Google Scholar

[17] Seow, C. E., Coules, H. E., Wu, G., Khan, R. H. U., Xu, X., & Williams, S. (2019). Wire + Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials and Design, 183, 108157

DOI: 10.1016/j.matdes.2019.108157

Google Scholar

[18] Kindermann, R. M., Roy, M. J., Morana, R., & Prangnell, P. B. (2020). Process response of Inconel 718 to wire + arc additive manufacturing with cold metal transfer. Materials and Design, 195, 109031

DOI: 10.1016/j.matdes.2020.109031

Google Scholar

[19] Tang, Y. L., Ye, X., Ding, L. C., Zhang, P. L., Yu, Z. S., Yang, S. L., Wu, D., & Fu, K. J. (2020). High-temperature tensile properties and interface structure of Ni–Fe dissimilar butt joints welded using the cold metal transfer process. Journal of Materials Research and Technology, 9(6), 15023–15033

DOI: 10.1016/j.jmrt.2020.10.098

Google Scholar

[20] Kumar, S., Pandey, C., & Goyal, A. (2021). Microstructure and mechanical behavior of P91 steel dissimilar welded joints made with IN718 filler. International Journal of Pressure Vessels and Piping, 190(November 2020), 104290

DOI: 10.1016/j.ijpvp.2020.104290

Google Scholar

[21] Gao, Y., Huang, L., Bao, Y., An, Q., Sun, Y., Zhang, R., Geng, L., & Zhang, J. (2020). Joints of TiBw/Ti6Al4V composites- Inconel 718 alloys dissimilar joining using Nb and Cu interlayers. Journal of Alloys and Compounds, 822

DOI: 10.1016/j.jallcom.2019.153559

Google Scholar

[22] Dev, S., Ramkumar, K. D., Arivazhagan, N., & Rajendran, R. (2018). Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416. Journal of Manufacturing Processes, 32(March), 685–698

DOI: 10.1016/j.jmapro.2018.03.035

Google Scholar

[23] Hejripour, F., & Aidun, D. K. (2017). Consumable selection for arc welding between Stainless Steel 410 and Inconel 718. Journal of Materials Processing Technology, 245, 287–299

DOI: 10.1016/j.jmatprotec.2017.02.013

Google Scholar

[24] Devendranath Ramkumar, K., Dev, S., Saxena, V., Choudhary, A., Arivazhagan, N., & Narayanan, S. (2015). Effect of flux addition on the microstructure and tensile strength of dissimilar weldments involving Inconel 718 and AISI 416. Materials and Design, 87, 663–674

DOI: 10.1016/j.matdes.2015.08.075

Google Scholar

[25] Geddes, B., Leon, H., & Huang, X. (2010). Superalloys: alloying and performance. Asm International.

Google Scholar

[26] Thellaputta, G. R., Chandra, P. S., & Rao, C. S. P. (2017). ScienceDirect 5th International Conference of Materials Processing and Characterization (ICMPC 2016) Machinability of Nickel Based Superalloys: A Review. Mater. Today Proc. 4, 3712-3721

DOI: 10.1016/j.matpr.2017.02.266

Google Scholar

[27] Arunachalam, R., & Mannan, M. A. (2000). Machinability of nickel-based high temperature alloys. Machining science and technology, 4(1), 127-168

DOI: 10.1080/10940340008945703

Google Scholar

[28] Henderson, M. B., Arrell, D., Larsson, R., Heobel, M., & Marchant, G. (2004). Nickel based superalloy welding practices for industrial gas turbine applications. Science and technology of welding and joining, 9(1), 13-21

DOI: 10.1179/136217104225017099

Google Scholar

[29] Kaynak, Y., & Tascioglu, E. (2020). Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing. Progress in Additive Manufacturing, 5, 221-234.

DOI: 10.1007/s40964-019-00099-1

Google Scholar

[30] Sequera, A., & Guo, Y. B. (2013, June). Uncertainty analysis of tool wear and surface roughness in end milling. In International Manufacturing Science and Engineering Conference (Vol. 55461, p. V002T02A030). American Society of Mechanical Engineers.

DOI: 10.1115/msec2013-1245

Google Scholar