[1]
Jewett, R. P., & Halchak, J. A. (1991). The Use of Alloy 718 in the Space Shuttle Main Engine. 749–760
DOI: 10.7449/1991/superalloys_1991_749_760
Google Scholar
[2]
Ramkumar, K. D., Abraham, W. S., Viyash, V., Arivazhagan, N., & Rabel, A. M. (2017). Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. Journal of Manufacturing Processes, 25, 306–322
DOI: 10.1016/j.jmapro.2016.12.018
Google Scholar
[3]
Winowlin Jappes, J. T., Ajithram, A., Adamkhan, M., & Reena, D. (2022). Welding on Ni based super alloys – A review. Materials Today: Proceedings, 60, 1656–1659
DOI: 10.1016/j.matpr.2021.12.208
Google Scholar
[4]
Prakash, E., Chandrasekar, G., Beemaraj, R. K., Ramesh, M., & Sundaresan, R. (2022). Investigate the welding of Inconel 718 and Inconel 600 in friction stir welding. Materials Today: Proceedings, 60, 1385-1388
DOI: 10.1016/j.matpr.2021.10.305
Google Scholar
[5]
Raj, S., & Biswas, P. (2022). Mechanical and microstructural characterizations of friction stir welded dissimilar butt joints of Inconel 718 and AISI 204Cu austenitic stainless steel. Materials Characterization, 185
DOI: 10.1016/j.matchar.2022.111763
Google Scholar
[6]
Tabaie, S., Rézaï-Aria, F., Flipo, B. C. D., & Jahazi, M. (2022). Dissimilar linear friction welding of selective laser melted Inconel 718 to forged Ni-based superalloy AD730TM: Evolution of strengthening phases. Journal of Materials Science and Technology, 96, 248–261
DOI: 10.1016/j.jmst.2021.03.086
Google Scholar
[7]
Hung Tra, T., & Sakaguchi, M. (2016). High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures. Journal of Science: Advanced Materials and Devices, 1(4), 501–506
DOI: 10.1016/j.jsamd.2016.08.009
Google Scholar
[8]
Anandaraj, J. A., Rajakumar, S., Balasubramanian, V., & Petley, V. (2021). Investigation on mechanical and metallurgical properties of rotary friction welded In718/SS410 dissimilar materials. Materials Today: Proceedings, 45, 962–966
DOI: 10.1016/j.matpr.2020.03.040
Google Scholar
[9]
J, A. A., Rajakumar, S., Balasubramanian, V., & Kavitha, S. (2021). Influence of process parameters on hot tensile behavior of rotary friction welded In 718/AISI 410 dissimilar joints. CIRP Journal of Manufacturing Science and Technology, 35, 830–838
DOI: 10.1016/j.cirpj.2021.09.010
Google Scholar
[10]
Madhankumar, S., Ashwin, S., Ajai Robert, J., Clifford Francis, J., Bavan Kalyan, R., Krithik Raj, A., & Joel Anton, W. (2020). Experimental investigation on ultimate tensile strength of laser butt welded inconel 718 alloy and 2205 duplex stainless steel. Materials Today: Proceedings, 45, 6783–6787
DOI: 10.1016/j.matpr.2020.12.670
Google Scholar
[11]
Adomako, N. K., Park, H. J., Cha, S. C., Lee, M., & Kim, J. H. (2021). Microstructure evolution and mechanical properties of the dissimilar joint between IN718 and STS304. Materials Science and Engineering A, 799 (August 2020), 140262
DOI: 10.1016/j.msea.2020.140262
Google Scholar
[12]
Hu, Y., Wu, L., Zhou, P., Ye, Y., & Wang, B. (2021). Fiber laser welding of Ti–6Al–4V to Inconel 718 bimetallic structure via Cu/Ta multi-interlayer. Vacuum, 192(May), 110461
DOI: 10.1016/j.vacuum.2021.110461
Google Scholar
[13]
K., D. R., Sidharth, D., Phani, P. P., Rajendran, R., K., G. M., & Narayanan, S. (2019). Microstructure and properties of inconel 718 and AISI 416 laser welded joints. Journal of Materials Processing Technology, 266(October 2018), 52–62
DOI: 10.1016/j.jmatprotec.2018.10.039
Google Scholar
[14]
Caiazzo, F., Alfieri, V., Sergi, V., Schipani, A., & Cinque, S. (2013). Dissimilar autogenous disk-laser welding of Haynes 188 and Inconel 718 superalloys for aerospace applications. International Journal of Advanced Manufacturing Technology, 68(5–8), 1809–1820
DOI: 10.1007/s00170-013-4979-9
Google Scholar
[15]
Sun, W., Xin, J., Wang, S., Chen, Y., & Huang, Y. (2021). Effect of deposited layer thickness on the microstructure and mechanical properties of IC10 single-crystal Ni3Al-based alloy electron beam-welded joint. Journal of Materials Research and Technology, 11, 1206–1219
DOI: 10.1016/j.jmrt.2021.01.115
Google Scholar
[16]
Xu, X., Ganguly, S., Ding, J., Seow, C. E., & Williams, S. (2018). Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing. Materials and Design, 160, 1042–1051
DOI: 10.1016/j.matdes.2018.10.038
Google Scholar
[17]
Seow, C. E., Coules, H. E., Wu, G., Khan, R. H. U., Xu, X., & Williams, S. (2019). Wire + Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials and Design, 183, 108157
DOI: 10.1016/j.matdes.2019.108157
Google Scholar
[18]
Kindermann, R. M., Roy, M. J., Morana, R., & Prangnell, P. B. (2020). Process response of Inconel 718 to wire + arc additive manufacturing with cold metal transfer. Materials and Design, 195, 109031
DOI: 10.1016/j.matdes.2020.109031
Google Scholar
[19]
Tang, Y. L., Ye, X., Ding, L. C., Zhang, P. L., Yu, Z. S., Yang, S. L., Wu, D., & Fu, K. J. (2020). High-temperature tensile properties and interface structure of Ni–Fe dissimilar butt joints welded using the cold metal transfer process. Journal of Materials Research and Technology, 9(6), 15023–15033
DOI: 10.1016/j.jmrt.2020.10.098
Google Scholar
[20]
Kumar, S., Pandey, C., & Goyal, A. (2021). Microstructure and mechanical behavior of P91 steel dissimilar welded joints made with IN718 filler. International Journal of Pressure Vessels and Piping, 190(November 2020), 104290
DOI: 10.1016/j.ijpvp.2020.104290
Google Scholar
[21]
Gao, Y., Huang, L., Bao, Y., An, Q., Sun, Y., Zhang, R., Geng, L., & Zhang, J. (2020). Joints of TiBw/Ti6Al4V composites- Inconel 718 alloys dissimilar joining using Nb and Cu interlayers. Journal of Alloys and Compounds, 822
DOI: 10.1016/j.jallcom.2019.153559
Google Scholar
[22]
Dev, S., Ramkumar, K. D., Arivazhagan, N., & Rajendran, R. (2018). Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416. Journal of Manufacturing Processes, 32(March), 685–698
DOI: 10.1016/j.jmapro.2018.03.035
Google Scholar
[23]
Hejripour, F., & Aidun, D. K. (2017). Consumable selection for arc welding between Stainless Steel 410 and Inconel 718. Journal of Materials Processing Technology, 245, 287–299
DOI: 10.1016/j.jmatprotec.2017.02.013
Google Scholar
[24]
Devendranath Ramkumar, K., Dev, S., Saxena, V., Choudhary, A., Arivazhagan, N., & Narayanan, S. (2015). Effect of flux addition on the microstructure and tensile strength of dissimilar weldments involving Inconel 718 and AISI 416. Materials and Design, 87, 663–674
DOI: 10.1016/j.matdes.2015.08.075
Google Scholar
[25]
Geddes, B., Leon, H., & Huang, X. (2010). Superalloys: alloying and performance. Asm International.
Google Scholar
[26]
Thellaputta, G. R., Chandra, P. S., & Rao, C. S. P. (2017). ScienceDirect 5th International Conference of Materials Processing and Characterization (ICMPC 2016) Machinability of Nickel Based Superalloys: A Review. Mater. Today Proc. 4, 3712-3721
DOI: 10.1016/j.matpr.2017.02.266
Google Scholar
[27]
Arunachalam, R., & Mannan, M. A. (2000). Machinability of nickel-based high temperature alloys. Machining science and technology, 4(1), 127-168
DOI: 10.1080/10940340008945703
Google Scholar
[28]
Henderson, M. B., Arrell, D., Larsson, R., Heobel, M., & Marchant, G. (2004). Nickel based superalloy welding practices for industrial gas turbine applications. Science and technology of welding and joining, 9(1), 13-21
DOI: 10.1179/136217104225017099
Google Scholar
[29]
Kaynak, Y., & Tascioglu, E. (2020). Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing. Progress in Additive Manufacturing, 5, 221-234.
DOI: 10.1007/s40964-019-00099-1
Google Scholar
[30]
Sequera, A., & Guo, Y. B. (2013, June). Uncertainty analysis of tool wear and surface roughness in end milling. In International Manufacturing Science and Engineering Conference (Vol. 55461, p. V002T02A030). American Society of Mechanical Engineers.
DOI: 10.1115/msec2013-1245
Google Scholar