[1]
J. Jiang, X. Xu, and J. Stringer, "Support structures for additive manufacturing: A review," J. Manuf. Mater. Process., vol. 2, no. 4, 2018.
DOI: 10.3390/jmmp2040064
Google Scholar
[2]
N. Sharma, S. Aghlmandi, F. Dalcanale, D. Seiler, H. F. Zeilhofer, P. Honigmann, and F. M. Thieringer, "Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants," Int. J. Mol. Sci., vol. 22, no. 16, p.1–19, 2021.
DOI: 10.3390/ijms22168521
Google Scholar
[3]
M. Chaturvedi, E. Scutelnicu, C. C. Rusu, L. R. Mistodie, D. Mihailescu, and S. Arungalai Vendan, "Wire arc additive manufacturing: Review on recent findings and challenges in industrial applications and materials characterization," Metals (Basel)., vol. 11, no. 6, 2021.
DOI: 10.3390/met11060939
Google Scholar
[4]
A. Saboori, D. Gallo, S. Biamino, P. Fino, and M. Lombardi, "An overview of additive manufacturing of titanium components by directed energy deposition: Microstructure and mechanical properties," Appl. Sci., vol. 7, no. 9, 2017.
DOI: 10.3390/app7090883
Google Scholar
[5]
G. Piscopo and L. Iuliano, "Current research and industrial application of laser powder directed energy deposition," Int. J. Adv. Manuf. Technol., 2022.
DOI: 10.1007/s00170-021-08596-w
Google Scholar
[6]
A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, and P. Fino, "Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review," Appl. Sci., vol. 10, no. 9, 2020.
DOI: 10.3390/app10093310
Google Scholar
[7]
P. Gradl, D. C. Tinker, A. Park, O. R. Mireles, M. Garcia, R. Wilkerson, and C. Mckinney, "Robust metal additive manufacturing process selection and development for aerospace components," J. Mater. Eng. Perform., vol. 31, no. 8, p.6013–6044, 2022.
DOI: 10.1007/s11665-022-06850-0
Google Scholar
[8]
S. Rajendrachari, "An overview of high-entropy alloys prepared by mechanical alloying followed by the characterization of their microstructure and various properties," Alloys, vol. 1, no. 2, p.116–134, 2022.
DOI: 10.3390/alloys1020008
Google Scholar
[9]
T. Ron, A. Shirizly, and E. Aghion, "Additive manufacturing technologies of high entropy alloys (HEA): Review and prospects," Materials (Basel)., vol. 16, no. 6, 2023.
DOI: 10.3390/ma16062454
Google Scholar
[10]
S. K. Rittinghaus, A. Ali, and U. Hecht, "Intrinsic heat treatment of an additively manufactured medium entropy AlCrFe2Ni2-alloy," Met. Mater. Int., vol. 29, no. 3, p.579–590, 2023.
DOI: 10.1007/s12540-022-01246-0
Google Scholar
[11]
Y. Guo, H. Su, P. Yang, Y. Zhao, Z. Shen, Y. Liu, D. Zhao, H. Jiang, J. Zhang, L. Liu, and H. Fu, "A review of emerging metallic system for high-energy beam additive manufacturing: Al–Co–Cr–Fe–Ni high entropy alloys," Acta Metall. Sin. (English Lett., vol. 35, no. 9, p.1407–1423, 2022.
DOI: 10.1007/s40195-022-01400-y
Google Scholar
[12]
X. Yang, Y. Zhuo, R. Zhu, S. Xi, C. He, H. Wu, and Y. Gao, "A novel, amorphous, non-equiatomic FeCrAlCuNiSi high-entropy alloy with exceptional corrosion resistance and mechanical properties," Acta Metall. Sin. (English Lett., vol. 33, no. 8, p.1057–1063, 2020.
DOI: 10.1007/s40195-019-00977-1
Google Scholar
[13]
M. Löbel, T. Lindner, T. Mehner, L. M. Rymer, S. Bjorklund, S. Joshi, and T. Lampke, "Microstructure and corrosion properties of AlCrFeCoNi high-entropy alloy coatings prepared by HVAF and HVOF," J. Therm. Spray Technol., vol. 31, no. 1–2, p.247–255, 2022.
DOI: 10.1007/s11666-021-01255-2
Google Scholar
[14]
Y. Chen, S. J. Clark, L. Sinclair, C. L. A. Leung, S. Marussi, T. Connolley, O. V. Magdysyuk, R. C. Atwood, G. J. Baxter, M. A. Jones, D. G. McCartney, I. Todd, and P. D. Lee, "In situ and operando X-ray imaging of directed energy deposition additive manufacturing," 2020.
DOI: 10.1016/j.addma.2021.101969
Google Scholar
[15]
A. Dass and A. Moridi, "State of the art in directed energy deposition: from additive manufacturing to materials design," Coatings, vol. 9, no. 7. 2019.
DOI: 10.3390/coatings9070418
Google Scholar
[16]
K. Asano, M. Tsukamoto, Y. Sechi, Y. Sato, S. Masuno, R. Higashino, T. Hara, M. Sengoku, and M. Yoshida, "Laser metal deposition of pure copper on stainless steel with blue and IR diode lasers.," Opt. Laser Technol., vol. 107, p.291–296, Nov. 2018.
DOI: 10.1016/j.optlastec.2018.06.012
Google Scholar
[17]
T. Kunimine, R. Miyazaki, Y. Yamashita, and Y. Funada, "Effects of laser-beam defocus on microstructural features of compositionally graded WC/Co-alloy composites additively manufactured by multi-beam laser directed energy deposition.," Sci. Rep., vol. 10, 8975, June 2020.
DOI: 10.1038/s41598-020-65429-8
Google Scholar
[18]
Y.-C. Hsu, C.-L. Li, and C.-H. Hsueh, "Effects of Al addition on microstructures and mechanical properties of CoCrFeMnNiAl(x) high entropy alloy films.," Entropy (Basel)., vol. 22, no. 1, Dec. 2019.
DOI: 10.3390/e22010002
Google Scholar
[19]
G. Li, K. Odum, C. Yau, M. Soshi, and K. Yamazaki, "High productivity fluence based control of directed energy deposition (DED) part geometry," J. Manuf. Process., vol. 65, p.407–417, 2021.
DOI: 10.1016/j.jmapro.2021.03.028
Google Scholar
[20]
S. Hadibeik, F. Spieckermann, M. Nosko, F. Khodabakhshi, M. Heydarzadeh Sohi, and J. Eckert, "High-entropy alloy-induced metallic glass transformation: challenges posed by in situ alloying via additive manufacturing," Adv. Eng. Mater., vol. 25, no. 7, 2023.
DOI: 10.1002/adem.202200764
Google Scholar
[21]
H. Dobbelstein, E. L. Gurevich, E. P. George, A. Ostendorf, and G. Laplanche, "Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy," Addit. Manuf., vol. 24, p.386–390, 2018.
DOI: 10.1016/j.addma.2018.10.008
Google Scholar
[22]
N. A. Ramaphoko, S. Skhosane, and N. Maledi, "Microstructural characterization and mechanical properties of laser beam-welded dissimilar joints between A6000 aluminum alloy and galvanized steel," Materials, vol. 15, no. 2. 2022.
DOI: 10.3390/ma15020543
Google Scholar
[23]
A. M. Barboza, I. N. Bastos, and L. C. R. Aliaga, "Nanograin size effects on deformation mechanisms and mechanical properties of nickel: A molecular dynamics study," Mater. Express, 2021.
DOI: 10.1166/mex.2021.2091
Google Scholar
[24]
M. Müller, C. C. Labisch, L. Gerdt, L Bach, M. Riede, J. Kaspar, E. López, F. Brueckner, M. Zimmermann, and C. Leyens, "Multimaterial direct energy deposition: From three-dimensionally graded components to rapid alloy development for advanced materials," J. Laser Appl., 2023.
DOI: 10.2351/7.0000788
Google Scholar