Effect of Shielded Metal Arc Welding on Microstructure, Hardness, and Tensile Strength of Nodular Cast Iron

Article Preview

Abstract:

Welding plays an important role in the component joining process. This study aimed to determine the effect of shielded metal arc welding on the microstructure, hardness and tensile strength of nodular cast iron. Shielded metal arc welding was performed using AWS A5.15 Eni-CL electrodes. Scanning Electron Microscope is used for metallographic observation. Hardness testing was carried out on base metal, heat-affected zone, and weld metal. This hardness test uses the Vickers technique. Tensile testing was carried out to determine the effect of welding on tensile strength. The results of the metallographic investigation showed the disappearance of the ferrite phase and the appearance of the ledeburite phase in the heat-affected zone and weld metal. The area with the highest hardness occurs in the heat-affected zone while the lowest hardness occurs in the weld metal. There is a decrease in the tensile strength of nodular cast iron due to the welding process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Bleicher, S. Schoenborn, H. Kaufmann, An investigation on the fatigue strength of repair welded nodular cast iron for heavy sections, Procedia Structural Integrity 47 (2023) 478-487

DOI: 10.1016/j.prostr.2023.07.076

Google Scholar

[2] C. Gebhardt, J. Zhang, A. Bezold, C. Broeckmann, Microscale fatigue mechanisms in high silicon alloyed nodular cast iron, International Journal of Fatigue 168 (2023) 107402

DOI: 10.1016/j.ijfatigue.2022.107402

Google Scholar

[3] A.S. Darmawan, A. Yulianto, Masyrukan, P.I. Purboputro, G.N. Jati, Shear yield strength, modulus of rigidity, and modulus of rupture of nodular cast iron on Magnesium Addition, International Journal of Emerging Trends in Engineering Research 8(6) (2020) 2365-2369

DOI: 10.30534/ijeter/2020/26862020

Google Scholar

[4] W. Napadłek, A. Wo´zniak, C. Pakowski, The properties of cast iron surface layers modified by laser ablation micromachining, Tribologia 6 (2017) 59–64

DOI: 10.5604/01.3001.0010.8061

Google Scholar

[5] H. Wu, H. Peng, Y. Liu, H. Tu, J. Wang, X. Su, Effect of selective pre-oxidation on the growth and corrosion resistance of hot-dip zinc coating of nodular cast iron, Corrosion Science 186 (2021) 109463

DOI: 10.1016/j.corsci.2021.109463

Google Scholar

[6] J. Vaara, M. Väntänen, J. Laine, J. Kemppainen, T. Frondelius, Prediction of the fatigue limit defining mechanism of nodular cast iron based on statistical microstructural features, Engineering Fracture Mechanics 277, (2023) 109004

DOI: 10.1016/j.engfracmech.2022.109004

Google Scholar

[7] N. Sommer, S. Böhm, Laser-induction welding of nodular grey cast iron using oscillating beam guidance-microstructural and mechanical characterization, Journal of Advanced Joining Processes 5 (2022) 100078

DOI: 10.1016/j.jajp.2021.100078

Google Scholar

[8] A.S. Darmawan, A.D. Anggono, A. Yulianto, B.W. Febriantoko, Masyrukan, A. Hamid, Comparison of Microstructure, Yield Strength, Tensile Strength, and Modulus of Elasticity Between Gray Cast Iron and Nodular Cast Iron, Key Engineering Materials 935 (2022) 25-32

DOI: 10.4028/p-2094w8

Google Scholar

[9] Z. Li, H. Peng, Y. Liu, X. Su, S. Kawi, J. Wang, Synergy of ball-milling and pre-oxidation on microstructure and corrosion resistance of hot-dip zinc coating of nodular cast iron, Journal of Materials Research and Technology 16 (2022) 1402-1412

DOI: 10.1016/j.jmrt.2021.12.052

Google Scholar

[10] A. Vaško, Comparison of mechanical and fatigue properties of SiMo- and SiCu-types of nodular cast iron, Materials Today: Proceedings 32(2) (2020) 168-173

DOI: 10.1016/j.matpr.2020.04.184

Google Scholar

[11] C. Bleicher, R. Wagener, H. Kaufmann, R. Tschuncky, F. Weber, P. Hettich, S. Buchmüller, H.W. Berg, Assessment of the fatigue strength of thick-walled nodular cast iron with Dross, Procedia Structural Integrity 18 (2019) 46-62

DOI: 10.1016/j.prostr.2019.08.139

Google Scholar

[12] M. Lukhi, M. Kuna, G. Hütter, Numerical investigation of low cycle fatigue mechanism in nodular cast iron, International Journal of Fatigue 113 (2018) 290-298

DOI: 10.1016/j.ijfatigue.2018.04.019

Google Scholar

[13] B. Sugito, A.D. Anggono, A. Qomarudin, Influence of Annealing and Normalizing Treatment to The Hardness and Microstructure of Friction Stir Welding Al-5052, International Journal of Emerging Trends in Engineering Research 8(9) (2020) 5362 – 5366

DOI: 10.30534/ijeter/2020/75892020

Google Scholar

[14] M.A. Hendrawan, P.I. Purboputro, A. Prima, Use of zinc powder on Resistance Spot Welding on Mild Steel and aluminium, Journal of Physics: Conference Series 1858(1) (2021) 012051

DOI: 10.1088/1742-6596/1858/1/012051

Google Scholar

[15] M. Chamim, F. Ardiyanto, Effect of stainless steel 304 TIG welding ampere on stress corrosion cracking phenomenon, Media Mesin: Majalah Teknik Mesin 24(2) (2023) 96-101

Google Scholar

[16] A. Mohammed, Y. Du, Z. Chen, S. A. Laqsum, Y. Zhang, Seismic behavior of concrete-filled steel tubes column frame-buckling restrained steel plate shear walls connected with bolt/weld, Thin-Walled Structures 189 (2023) 110911

DOI: 10.1016/j.tws.2023.110911

Google Scholar

[17] H. Tukur, L. Yonghao, Oxidation and Deformation behaviours of the 316L StainlessSteel Weldments in Nuclear Plants, Int. J. Electrochem. Sci. 15 (2020) 2115 – 2132

DOI: 10.20964/2020.03.69

Google Scholar

[18] T. Sonar, V. Balasubramanian, T. Venkateswaran, V. Xavier, A. Muthumanickam, A. Manjunath, M. Ivanov, I. Suleymanova, Effect of post weld heat treatment on weld metal microstructure and hardness of HFCA-TIG welded ASTM-B670 high temperature alloy joints, Journal of Alloys and Metallurgical Systems 3 (2023) 100025

DOI: 10.1016/j.jalmes.2023.100025

Google Scholar

[19] R. Gadallah, H. Murakawa, M. Shibahara, Thickness and weld orientation effects on fatigue crack growth after a single tensile overload, International Journal of Pressure Vessels and Piping 206 (2023) 105020

DOI: 10.1016/j.ijpvp.2023.105020

Google Scholar

[20] J. Sun, K. Dilger, Influence of initial residual stresses on welding residual stresses in ultra-high strength steel S960, Journal of Manufacturing Processes 101 (2023) 259-268

DOI: 10.1016/j.jmapro.2023.06.011

Google Scholar

[21] Y. Zhong, Z. Liu, J. Wu, J. Ma, J. Tao, H. Ji, Optimization of welding distortion of vacuum vessel for nuclear fusion based on finite element analysis, Fusion Engineering and Design 195 (2023) 113935

DOI: 10.1016/j.fusengdes.2023.113935

Google Scholar

[22] X. Jiang, Z. Lv, X. Qiang, S. Song, Fatigue performance improvement of U-rib butt-welded connections of steel bridge decks using externally bonded CFRP strips, Thin-Walled Structures 191 (2023) 111017

DOI: 10.1016/j.tws.2023.111017

Google Scholar

[23] C. Wang, M. Fan, M. Yu, W. Yu, Z. Liu, X. Chen, Coupling effect of thermal aging and pre-strain on fracture behavior of SMAW welded joints, Engineering Fracture Mechanics 283 (2023) 109224

DOI: 10.1016/j.engfracmech.2023.109224

Google Scholar

[24] P.K. Baghel, Effect of SMAW process parameters on similar and dissimilar metal welds: An overview, Heliyon 8(12) (2022) e12161

DOI: 10.1016/j.heliyon.2022.e12161

Google Scholar

[25] G. Youn, Y. Kim, Y. Miura, Thermal aging effect on fracture toughness of GTAW/SMAW of 316L stainless steel: experiments and applicability of existing CASS models, Nuclear Engineering and Technology 53(4) (2021) 1357-1368

DOI: 10.1016/j.net.2020.10.007

Google Scholar

[26] H. Hariningsih, L. Lutiyatmi, T. Daryanto, Effects of heat treatment on microstructure and hardness of D2 tools, Applied Research and Smart Technology 3(1) (2022) 29-37

DOI: 10.23917/arstech.v3i1.761

Google Scholar

[27] A.S. Darmawan, W.A. Siswanto, T. Sujitno, Comparison of Commercially Pure Titanium Surface Hardness Improvement by Plasma Nitrocarburizing and Ion Implantation, Advanced Materials Research 789 (2013) 347-351

DOI: 10.4028/www.scientific.net/amr.789.347

Google Scholar

[28] W.A. Siswanto, A.S. Darmawan, Teaching Finite Element Method of Structural Line Elements Assisted by Open Source FreeMat, Research Journal of Applied Sciences, Engineering and Technology 4(10) (2012) 1277-1286

Google Scholar

[29] A.S. Darmawan, P.I. Purboputro, A. Yulianto, A.D. Anggono, Wijianto, Masyrukan, R.D. Setiawan, N.D. Kartika, Effect of Magnesium on the Strength, Stiffness and Toughness of Nodular Cast Iron, Materials Science Forum 991 (2020) 17-23

DOI: 10.4028/www.scientific.net/msf.991.17

Google Scholar

[30] T. Sarkar, A.K. Pramanick, T.K, Pal, Some Aspects on the Welding Characteristics and Formation of Microstructures in a Newly Developed Coated Electrode for Austempered Ductile Iron (ADI), Indian Welding Journal 48(4) (2015) 44-60

DOI: 10.22486/iwj.v48i4.126050

Google Scholar

[31] D. Pathak, R.P. Singh, S. Gaur, V. Balu, Experimental investigation of effects of welding current and electrode angle on tensile strength of shielded metal arc welded low carbon steel plates, Materials Today: Proceedings 26(2) (2020) 929-931

DOI: 10.1016/j.matpr.2020.01.146

Google Scholar