[1]
C. Bleicher, S. Schoenborn, H. Kaufmann, An investigation on the fatigue strength of repair welded nodular cast iron for heavy sections, Procedia Structural Integrity 47 (2023) 478-487
DOI: 10.1016/j.prostr.2023.07.076
Google Scholar
[2]
C. Gebhardt, J. Zhang, A. Bezold, C. Broeckmann, Microscale fatigue mechanisms in high silicon alloyed nodular cast iron, International Journal of Fatigue 168 (2023) 107402
DOI: 10.1016/j.ijfatigue.2022.107402
Google Scholar
[3]
A.S. Darmawan, A. Yulianto, Masyrukan, P.I. Purboputro, G.N. Jati, Shear yield strength, modulus of rigidity, and modulus of rupture of nodular cast iron on Magnesium Addition, International Journal of Emerging Trends in Engineering Research 8(6) (2020) 2365-2369
DOI: 10.30534/ijeter/2020/26862020
Google Scholar
[4]
W. Napadłek, A. Wo´zniak, C. Pakowski, The properties of cast iron surface layers modified by laser ablation micromachining, Tribologia 6 (2017) 59–64
DOI: 10.5604/01.3001.0010.8061
Google Scholar
[5]
H. Wu, H. Peng, Y. Liu, H. Tu, J. Wang, X. Su, Effect of selective pre-oxidation on the growth and corrosion resistance of hot-dip zinc coating of nodular cast iron, Corrosion Science 186 (2021) 109463
DOI: 10.1016/j.corsci.2021.109463
Google Scholar
[6]
J. Vaara, M. Väntänen, J. Laine, J. Kemppainen, T. Frondelius, Prediction of the fatigue limit defining mechanism of nodular cast iron based on statistical microstructural features, Engineering Fracture Mechanics 277, (2023) 109004
DOI: 10.1016/j.engfracmech.2022.109004
Google Scholar
[7]
N. Sommer, S. Böhm, Laser-induction welding of nodular grey cast iron using oscillating beam guidance-microstructural and mechanical characterization, Journal of Advanced Joining Processes 5 (2022) 100078
DOI: 10.1016/j.jajp.2021.100078
Google Scholar
[8]
A.S. Darmawan, A.D. Anggono, A. Yulianto, B.W. Febriantoko, Masyrukan, A. Hamid, Comparison of Microstructure, Yield Strength, Tensile Strength, and Modulus of Elasticity Between Gray Cast Iron and Nodular Cast Iron, Key Engineering Materials 935 (2022) 25-32
DOI: 10.4028/p-2094w8
Google Scholar
[9]
Z. Li, H. Peng, Y. Liu, X. Su, S. Kawi, J. Wang, Synergy of ball-milling and pre-oxidation on microstructure and corrosion resistance of hot-dip zinc coating of nodular cast iron, Journal of Materials Research and Technology 16 (2022) 1402-1412
DOI: 10.1016/j.jmrt.2021.12.052
Google Scholar
[10]
A. Vaško, Comparison of mechanical and fatigue properties of SiMo- and SiCu-types of nodular cast iron, Materials Today: Proceedings 32(2) (2020) 168-173
DOI: 10.1016/j.matpr.2020.04.184
Google Scholar
[11]
C. Bleicher, R. Wagener, H. Kaufmann, R. Tschuncky, F. Weber, P. Hettich, S. Buchmüller, H.W. Berg, Assessment of the fatigue strength of thick-walled nodular cast iron with Dross, Procedia Structural Integrity 18 (2019) 46-62
DOI: 10.1016/j.prostr.2019.08.139
Google Scholar
[12]
M. Lukhi, M. Kuna, G. Hütter, Numerical investigation of low cycle fatigue mechanism in nodular cast iron, International Journal of Fatigue 113 (2018) 290-298
DOI: 10.1016/j.ijfatigue.2018.04.019
Google Scholar
[13]
B. Sugito, A.D. Anggono, A. Qomarudin, Influence of Annealing and Normalizing Treatment to The Hardness and Microstructure of Friction Stir Welding Al-5052, International Journal of Emerging Trends in Engineering Research 8(9) (2020) 5362 – 5366
DOI: 10.30534/ijeter/2020/75892020
Google Scholar
[14]
M.A. Hendrawan, P.I. Purboputro, A. Prima, Use of zinc powder on Resistance Spot Welding on Mild Steel and aluminium, Journal of Physics: Conference Series 1858(1) (2021) 012051
DOI: 10.1088/1742-6596/1858/1/012051
Google Scholar
[15]
M. Chamim, F. Ardiyanto, Effect of stainless steel 304 TIG welding ampere on stress corrosion cracking phenomenon, Media Mesin: Majalah Teknik Mesin 24(2) (2023) 96-101
Google Scholar
[16]
A. Mohammed, Y. Du, Z. Chen, S. A. Laqsum, Y. Zhang, Seismic behavior of concrete-filled steel tubes column frame-buckling restrained steel plate shear walls connected with bolt/weld, Thin-Walled Structures 189 (2023) 110911
DOI: 10.1016/j.tws.2023.110911
Google Scholar
[17]
H. Tukur, L. Yonghao, Oxidation and Deformation behaviours of the 316L StainlessSteel Weldments in Nuclear Plants, Int. J. Electrochem. Sci. 15 (2020) 2115 – 2132
DOI: 10.20964/2020.03.69
Google Scholar
[18]
T. Sonar, V. Balasubramanian, T. Venkateswaran, V. Xavier, A. Muthumanickam, A. Manjunath, M. Ivanov, I. Suleymanova, Effect of post weld heat treatment on weld metal microstructure and hardness of HFCA-TIG welded ASTM-B670 high temperature alloy joints, Journal of Alloys and Metallurgical Systems 3 (2023) 100025
DOI: 10.1016/j.jalmes.2023.100025
Google Scholar
[19]
R. Gadallah, H. Murakawa, M. Shibahara, Thickness and weld orientation effects on fatigue crack growth after a single tensile overload, International Journal of Pressure Vessels and Piping 206 (2023) 105020
DOI: 10.1016/j.ijpvp.2023.105020
Google Scholar
[20]
J. Sun, K. Dilger, Influence of initial residual stresses on welding residual stresses in ultra-high strength steel S960, Journal of Manufacturing Processes 101 (2023) 259-268
DOI: 10.1016/j.jmapro.2023.06.011
Google Scholar
[21]
Y. Zhong, Z. Liu, J. Wu, J. Ma, J. Tao, H. Ji, Optimization of welding distortion of vacuum vessel for nuclear fusion based on finite element analysis, Fusion Engineering and Design 195 (2023) 113935
DOI: 10.1016/j.fusengdes.2023.113935
Google Scholar
[22]
X. Jiang, Z. Lv, X. Qiang, S. Song, Fatigue performance improvement of U-rib butt-welded connections of steel bridge decks using externally bonded CFRP strips, Thin-Walled Structures 191 (2023) 111017
DOI: 10.1016/j.tws.2023.111017
Google Scholar
[23]
C. Wang, M. Fan, M. Yu, W. Yu, Z. Liu, X. Chen, Coupling effect of thermal aging and pre-strain on fracture behavior of SMAW welded joints, Engineering Fracture Mechanics 283 (2023) 109224
DOI: 10.1016/j.engfracmech.2023.109224
Google Scholar
[24]
P.K. Baghel, Effect of SMAW process parameters on similar and dissimilar metal welds: An overview, Heliyon 8(12) (2022) e12161
DOI: 10.1016/j.heliyon.2022.e12161
Google Scholar
[25]
G. Youn, Y. Kim, Y. Miura, Thermal aging effect on fracture toughness of GTAW/SMAW of 316L stainless steel: experiments and applicability of existing CASS models, Nuclear Engineering and Technology 53(4) (2021) 1357-1368
DOI: 10.1016/j.net.2020.10.007
Google Scholar
[26]
H. Hariningsih, L. Lutiyatmi, T. Daryanto, Effects of heat treatment on microstructure and hardness of D2 tools, Applied Research and Smart Technology 3(1) (2022) 29-37
DOI: 10.23917/arstech.v3i1.761
Google Scholar
[27]
A.S. Darmawan, W.A. Siswanto, T. Sujitno, Comparison of Commercially Pure Titanium Surface Hardness Improvement by Plasma Nitrocarburizing and Ion Implantation, Advanced Materials Research 789 (2013) 347-351
DOI: 10.4028/www.scientific.net/amr.789.347
Google Scholar
[28]
W.A. Siswanto, A.S. Darmawan, Teaching Finite Element Method of Structural Line Elements Assisted by Open Source FreeMat, Research Journal of Applied Sciences, Engineering and Technology 4(10) (2012) 1277-1286
Google Scholar
[29]
A.S. Darmawan, P.I. Purboputro, A. Yulianto, A.D. Anggono, Wijianto, Masyrukan, R.D. Setiawan, N.D. Kartika, Effect of Magnesium on the Strength, Stiffness and Toughness of Nodular Cast Iron, Materials Science Forum 991 (2020) 17-23
DOI: 10.4028/www.scientific.net/msf.991.17
Google Scholar
[30]
T. Sarkar, A.K. Pramanick, T.K, Pal, Some Aspects on the Welding Characteristics and Formation of Microstructures in a Newly Developed Coated Electrode for Austempered Ductile Iron (ADI), Indian Welding Journal 48(4) (2015) 44-60
DOI: 10.22486/iwj.v48i4.126050
Google Scholar
[31]
D. Pathak, R.P. Singh, S. Gaur, V. Balu, Experimental investigation of effects of welding current and electrode angle on tensile strength of shielded metal arc welded low carbon steel plates, Materials Today: Proceedings 26(2) (2020) 929-931
DOI: 10.1016/j.matpr.2020.01.146
Google Scholar