Wear Failure Analysis of a Steel Bar Used in the Coal Screener

Article Preview

Abstract:

The wear failure is widely found in steel bars used for coal screener machines in the mining industries. The failed parts of such components require immediate replacement to lengthen the machine's service life. This work aimed to investigate the structure and properties of the worn bar of a screener machine after experiencing wear failure and analyze the wear mechanism. The work started by machining the sample from the original bar, then grinding and polishing. The microstructure of the worn samples was observed using SEM and XRD. The hardness distribution of the bar was measured from the periphery to the core. The results of this work would provide evidence of wear sources responsible for the wear failure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-138

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Shi and Z. Zhu, Case study: Wear analysis of the middle plate of a heavy-load scraper conveyor chute under a range of operating conditions, Wear, 380–381 (2017) 36–41.

DOI: 10.1016/j.wear.2017.03.005

Google Scholar

[2] B. Ramatsetse, K. Mpofu, and O. Makinde, Failure and sensitivity analysis of a reconfigurable vibrating screen using finite element analysis, Case Stud. Eng. Fail. Anal., 9 (2017) 40–51.

DOI: 10.1016/j.csefa.2017.04.001

Google Scholar

[3] W. Hong, W. Cai, S. Wang, and M. M. Tomovic, Mechanical wear debris feature, detection, and diagnosis: A review, Chinese J. Aeronaut., 31 (2018) 867–882.

DOI: 10.1016/j.cja.2017.11.016

Google Scholar

[4] H. S. Hariningsih Hariningsih, Sumpena Sumpena, The effectivity of used-oil as quenching medium of 42-CrMo4 steel for automotive materials, Appl. Res. Smart Technol., 1 1 (2020) 28–34.

DOI: 10.23917/arstech.v1i1.11

Google Scholar

[5] M. Masyrukan, A. S. Darmawan, A. Hariyanto, P. I. Purboputro, H. A. Ihwanudin, and M. I. Pamungkas, The Effect of Heat Treatment and Pressing At 400 °C With Coconut Shell Charcoal Media on the Hardness, Microstructure, and Density of Al-Si Alloys, Media Mesin Maj. Tek. Mesin, 23 2 ,(2022) 106–113.

DOI: 10.23917/mesin.v23i2.19347

Google Scholar

[6] Hariningsih, D. Gustiani, and Sutiyoko, Effect of quenching media variations on the hardness and microstructures of AISI O1 tool steel, Media Mesin Maj. Tek. Mesin, 24 2 (2023) 82–89.

Google Scholar

[7] R. Abang, S. Weiß, and H. J. Krautz, Impact of increased power plant cycling on the oxidation and corrosion of coal-fired superheater materials, Fuel, 220 (2018) 521–534.

DOI: 10.1016/j.fuel.2018.02.047

Google Scholar

[8] T. Tjahjono, T. W. B. Riyadi, B. W. Febriantoko, Suprapto, and T. Sujitno, Hardness optimization based on nitriding time and gas pressure in the plasma nitriding of aluminium alloys, Mater. Sci. Forum, 961 (2019).

DOI: 10.4028/www.scientific.net/msf.961.112

Google Scholar

[9] S. G. Peng, R. B. Song, T. Sun, F. Q. Yang, P. Deng, and C. J. Wu, Surface failure behavior of 70Mn martensite steel under abrasive impact wear, Wear, 362–363 (2016) 129–134.

DOI: 10.1016/j.wear.2016.05.019

Google Scholar

[10] S. Z. Wattel, J. Garcia-Suarez, and J. F. Molinari, Understanding the mechanisms of adhesive wear for heterogeneous materials through atomistic simulations, Extrem. Mech. Lett., 57 (2022) 101913.

DOI: 10.1016/j.eml.2022.101913

Google Scholar

[11] Y. xin Tian, H. qiang Xiao, C. chuan You, J. yu Feng, Y. Xiao, and X. Zhou, High-temperature oxidation and wear properties of laser cladded Ti-Al-N composite coatings, Trans. Nonferrous Met. Soc. China, 33 6 (2023) 1779–1791.

DOI: 10.1016/s1003-6326(23)66221-1

Google Scholar

[12] T. W. B. Riyadi, T. Masruri, Mujiyono, D. Nurhadiyanto, A. F. H. Mukhammad, and I. Veza, Effect of Al Additions on the Microstructure and Mechanical Properties of the SHS Product of Ni-Al-TiO2 Mixtures, Mater. Sci. Forum, 1029 (2021) 3–8.

DOI: 10.4028/www.scientific.net/msf.1029.3

Google Scholar

[13] T. W. B. Riyadi, Structure and properties of Ni˗Al˗Ti systems formed by combustion synthesis, Mater. Sci. Forum, 991 (2020) 44–50.

DOI: 10.4028/www.scientific.net/msf.991.44

Google Scholar

[14] T. W. B. Riyadi, T. Zhang, and Sarjito, Microstructure and adhesion of NiAl/Al and NiAl/Ni coatings formed by SHS process, Appl. Mech. Mater., 660(2014) 185–189.

DOI: 10.4028/www.scientific.net/amm.660.185

Google Scholar

[15] T. W. B. Riyadi, Mujiyono, Didik Nurhadiyanto, Alaya Fadlu Hadi Mukhammad, Syukur Bin Abu Hassan, Asri Peni Wulandari, Murni, Fabrication of NiAl and TiC intermetallic matrix composite coatings, Compos. Interfaces, (2021) 1–16.

DOI: 10.1080/09276440.2021.1942667

Google Scholar

[16] Z. kai Chen, T. Zhou, R. Zhao, H. Zhang, S. Lu, W. Yang, H. Zhou, Improved fatigue wear resistance of gray cast iron by localized laser carburizing, Mater. Sci. Eng. A, 644 (2015) 1–9.

DOI: 10.1016/j.msea.2015.07.046

Google Scholar