[1]
J. Domski, A blurred border between ordinary concrete and SFRC, Constr. Build. Mater. 112 (2016) 247–252.
DOI: 10.1016/j.conbuildmat.2016.02.205
Google Scholar
[2]
R. Babaie, M. Abolfazli, A. Fahimifar, Mechanical properties of steel and polymer fiber reinforced concrete, J. Mech. Behav. Mater. 28 (1) (2019) 119–134.
DOI: 10.1515/jmbm-2019-0014
Google Scholar
[3]
A.A. Shah, Y. Ribakov, Recent trends in steel fibered high-strength concrete, Mater. Des. 32 (8–9) (2011) 4122–4151.
DOI: 10.1016/j.matdes.2011.03.030
Google Scholar
[4]
P. Song, S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete, Constr. Build. Mater. 18 (9) (2004) 669–673.
DOI: 10.1016/j.conbuildmat.2004.04.027
Google Scholar
[5]
D.-Y. Yoo, J.-M. Yang, Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams, Cem. Concr. Compos. 87 (2018) 137–148.
DOI: 10.1016/j.cemconcomp.2017.12.010
Google Scholar
[6]
A.E. Naaman, A.S. Argon, F. Moavenzadeh, A fracture model for fiber reinforced cementitious materials, Cement Concr. Res. 3 (4) (1973) 397–411.
DOI: 10.1016/0008-8846(73)90078-1
Google Scholar
[7]
J. Katzer, T. Szatkiewicz, Properties of concrete elements with 3-D printed formworks which substitute steel reinforcement, Constr. Build. Mater. 210 (2019) 157–161.
DOI: 10.1016/j.conbuildmat.2019.03.204
Google Scholar
[8]
A. Skoratko, J. Katzer, Harnessing 3D Printing of Plastics in Construction—Opportunities and Limitations, Materials. 14 (2021).
DOI: 10.3390/ma14164547
Google Scholar
[9]
J. Katzer, T. Szatkiewicz, Effect of 3D Printed Spatial Reinforcement on Flexural Characteristics of Conventional Mortar, Mater. 13 (14) (2020).
DOI: 10.3390/ma13143133
Google Scholar
[10]
Y. Xu, H. Zhang, Y. Gan, B. Šavija, Cementitious composites reinforced with 3D printed functionally graded polymeric lattice structures: Experiments and modelling, Additive Manufacturing. 39 (2021).
DOI: 10.1016/j.addma.2021.101887
Google Scholar
[11]
Y. Ding, Z. You, S. Jalali, The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete, Eng. Struct. 33 (1) (2011) 107–117.
DOI: 10.1016/j.engstruct.2010.09.023
Google Scholar
[12]
P. Desnerck, J.M. Lees, C.T. Morley, Impact of the reinforcement layout on the load capacity of reinforced concrete half-joints, Eng. Struct. 127 (2016) 227–239.
DOI: 10.1016/j.engstruct.2016.08.061
Google Scholar
[13]
N. Hack, W.V. Lauer, Mesh-mould, Robotically fabricated spatial meshes as reinforced concrete formwork, Archit. Design. 84 (3) (2014)
DOI: 10.1002/ad.1753
Google Scholar
[14]
Y. Xu, B. Šavija, Development of strain hardening cementitious composite (SHCC) reinforced with 3D printed polymeric reinforcement: Mechanical properties, Compos. Part B Eng. 174 (2019).
DOI: 10.1016/j.compositesb.2019.107011
Google Scholar
[15]
I. Farina, F. Fabbrocino, G. Carpentieri, M. Modano, A. Amendola, R. Goodall, L. Feo, F. Fraternali, On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers, Composites Part B: Engineering. 90 (2016) 76-85.
DOI: 10.1016/j.compositesb.2015.12.006
Google Scholar
[16]
Y. Xu, Creating strain hardening cementitious composites (SHCCs) through use of additively manufactured polymeric meshes as reinforcement. In Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Bayonne, France, 24–26 June 2019.
DOI: 10.21012/fc10.235158
Google Scholar
[17]
A. Shweiki, MT. Junaid, S. Barakat, Flexural characteristics of mortar cement reinforced with 3D-printed polymer. Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering (CSEE'19). Rome, Italy, 7–9 April 2019.
DOI: 10.11159/icsect19.154
Google Scholar
[18]
B. Savija, Use of 3D printing to create multifunctional cementitious composites: Review, challenges and opportunities. RILEM Tech. Lett. 5 (2020) 17–25.
DOI: 10.21809/rilemtechlett.2020.113
Google Scholar
[19]
B. Raphael, S. Senthilnathan, A. Patel, S. Bhat, A review of concrete 3D printed structural members. Frontiers in Built Environment. 8 (2023)
DOI: 10.3389/fbuil.2022.1034020
Google Scholar
[20]
J. Katzer, A. Skoratko, Concept of using 3D printing for production of concrete-plastic columns with unconventional cross-sections, Materials. 14 (6) (2021).
DOI: 10.3390/ma14061565
Google Scholar
[21]
A. Skoratko, T. Szatkiewicz, J. Katzer, M. Jagoda, Mechanical Properties of Mortar Beams Reinforced by Gyroid 3D Printed Plastic Spatial Elements. Cem. Concr. Compos. 134 (2022).
DOI: 10.1016/j.cemconcomp.2022.104809
Google Scholar
[22]
I. Hager, A. Golonka, R. Putanowicz, 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 151 (2016) 292–299.
DOI: 10.1016/j.proeng.2016.07.357
Google Scholar
[23]
AM. Baciu, I. Kiss, E. Desnica, J. Sárosi, Reinforcing concrete with recycled plastic wastes, Journal of Physics: Conference Series. 2212 (1)
DOI: 10.1088/1742-6596/2212/1/012031
Google Scholar
[24]
F. Tahir et al. Environmental impacts of using recycled plastics in concrete, Mater. Today:. Proc. 62 (6) (2022) 4013-4017
DOI: 10.1016/j.matpr.2022.04.593
Google Scholar
[25]
I. Kothman, N. Faber, How 3D printing technology changes the rules of the game Insights from the construction sector, J. Manuf. Technol. Manage. 27 (7) (2016) 932–943.
DOI: 10.1108/jmtm-01-2016-0010
Google Scholar
[26]
J. Katzer, A. Skoratko, Using 3D printed formworks for the creation of steel fibre reinforced concrete-plastic columns, Constr. Build. Mater. 337 (2022)
DOI: 10.1016/j.conbuildmat.2022.127586
Google Scholar
[27]
EN 196-1 Chapter13. Cement—determination of strength, Building Materials 10—Testing Methods (2016).
Google Scholar
[28]
J. Katzer, Median diameter as a grading characteristic for fine aggregate cement composite designing, Construct. Build. Mater. 35 (2012) 884–887.
DOI: 10.1016/j.conbuildmat.2012.04.050
Google Scholar
[29]
BSI, BS EN 197-1. Cement, Part 1: Composition, Specifications and Conformity Criteria for Common Cements, 2011.
Google Scholar
[30]
BS EN 934-2, 2012 Admixtures for Concrete, Mortar and Grout. Concrete Admixtures. Definitions, Requirements, Conformity, Marking and Labelling, 2009 +A1.
DOI: 10.3403/30180270
Google Scholar
[31]
UNE EN 1015-3:2000/A2:2007 Methods of Test for Mortar for Masonry - Part 3: Determination of Consistence of Fresh Mortar (by flow table).
DOI: 10.3403/01541440
Google Scholar
[32]
R.A. Fisher, The design of experiments, Oliver & Boyd, Macmillan, New York, 1935.
Google Scholar
[33]
D. Nettleton, A discussion of statistical methods for design and analysis of microarray experiments for plant scientists, Plant Cell. 18(9) (2006) 2112-21.
DOI: 10.1105/tpc.106.041616
Google Scholar
[34]
B. Wang, M. Zhai, X. Yao, Q. Wu, M. Yang, X. Wang, J. Huang, H. Zhao, Printable and Mechanical Performance of 3D Printed Concrete Employing Multiple Industrial Wastes, Buildings. 12(3) (2022).
DOI: 10.3390/buildings12030374
Google Scholar
[35]
F. Liu, J. Xu, S. Tan, A. Gong, H. Li, Orthogonal Experiments and Neural Networks Analysis of Concrete Performance, Water. 14(16) (2022).
DOI: 10.3390/w14162520
Google Scholar
[36]
J. Li, Y. Zhang, G. Liu, X. Peng, Preparation and performance evaluation of an innovative pervious concrete pavement, Construction and Building Materials. 138 (2017) 479-485.
DOI: 10.1016/j.conbuildmat.2017.01.137
Google Scholar
[37]
CD. Johnston, RW. Zemp, Flexural fatigue performance of steel fiber reinforced concrete-influence of fiber content, aspect ratio, and type, ACI Mater J. 88(4) (1991) 374–83.
DOI: 10.14359/1875
Google Scholar
[38]
T. Paskova, C. Meyer, Low-cycle fatigue of plain and fiber-reinforced concrete, ACI Mater J. 94(4) (1997) 273–85.
Google Scholar
[39]
D-I. Chang, W-K. Chai, Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures, Nucl Eng Des 156 (1995) 201–207.
DOI: 10.1016/0029-5493(94)00946-v
Google Scholar
[40]
M.K. Lee, B.I.G. Barr, An overview of the fatigue behaviour of plain and fibre reinforced concrete, Cement and Concrete Composites. 26 (4) (2004) 299-305
DOI: 10.1016/s0958-9465(02)00139-7
Google Scholar
[41]
I. Iskhakov, Y. Ribakov, A design method for two-layer beams consisting of normal and fibered high strength concrete, Materials & Design. 28(5) (2007) 1672-1677.
DOI: 10.1016/j.matdes.2006.03.017
Google Scholar