[1]
X.Z. Cui, J. Zhang, D. Huang, Z.Q. Liu, F. Hou, S.Q. Cui, L. Zhang, Z.X. Wang, Experimental study on the relationship between permeability and strength of permeable concrete, J. Mater. Civ. Eng. 29 (11) (2017).
DOI: 10.1061/(asce)mt.1943-5533.0002058
Google Scholar
[2]
M. Sonebi, M. Bassuoni, A. Yahia, Permeable concrete: mix design, properties and applications, RILEM Tech. Lett. 1 (2016) 109-115.
DOI: 10.21809/rilemtechlett.2016.24
Google Scholar
[3]
A. Chandrappa, K. Biligiri, Permeable concrete as a sustainable pavement material – research findings and future prospects: a state-of-the-art review, Constr. Build. Mater. 111 (2016) 262–274.
DOI: 10.1016/j.conbuildmat.2016.02.054
Google Scholar
[4]
Santhanam, H., Majumdar, R., Permeable Pavements as Sustainable Nature-Based Solutions for the Management of Urban Lake Ecosystems. In: Dhyani, S., Gupta, A., Karki, M. (eds) Nature-based Solutions for Resilient Ecosystems and Societies. Disaster Resilience and Green Growth. Springer, Singapore, (2020).
DOI: 10.1007/978-981-15-4712-6_19
Google Scholar
[5]
Z. Sun, X. Lin, A. Vollpracht: Permeable concrete made of alkali activated slag and geopolymers. Construction and Building Materials 189 (2018) 797–803.
DOI: 10.1016/j.conbuildmat.2018.09.067
Google Scholar
[6]
M. Gesoglu, E. Güneyisi, G. Khoshnaw, S. Ipek, Abrasion and freezing thawing resistance of permeable concretes containing waste rubbers. Construct. Build. Mater. 73 (2014), 19-24.
DOI: 10.1016/j.conbuildmat.2014.09.047
Google Scholar
[7]
H.A. Ibrahim, H.A. Razak, F. Abutaha, Strength and abrasion resistance of palm oil clinker permeable concrete under different curing method, Construct. Build. Mater. 147 (2017) 576-587.
DOI: 10.1016/j.conbuildmat.2017.04.072
Google Scholar
[8]
W. Yeih, T.C. Fu, J.J. Chang, R. Huang, Properties of permeable concrete made with air-cooling electric arc furnace slag as aggregates. Construct. Build. Mater. 93 (2015) 737-745.
DOI: 10.1016/j.conbuildmat.2015.05.104
Google Scholar
[9]
S. Wang, G. Zhang, B. Wang, M. Wu, Mechanical strengths and durability properties of permeable concretes with blended steel slag and natural aggregate, Journal of Cleaner Production, 271 (2020), 122590.
DOI: 10.1016/j.jclepro.2020.122590
Google Scholar
[10]
ACI 522R-2010. Report on permeable concrete, American Concrete Institute, 2010.
Google Scholar
[11]
ACI 522.1-13, Specification for Permeable Concrete Pavement, ACI, 2013.
Google Scholar
[12]
BS 7533-13: 2009, Pavements Constructed with Clay, Natural Stone or Concrete Pavers. Guide for the Design of Permeable Pavements Constructed with Concrete Paving Blocks and Flags, Natural Stone Slabs and Setts and Clay Pavers, British Standard Institution, 2009.
DOI: 10.3403/30159352u
Google Scholar
[13]
P.D. Tennis, M.L. Leming, D.J. Akers, Permeable Concrete Pavements, Portland Cement Association: Skokie, IL, USA, 2004; p.28.
Google Scholar
[14]
Specifier´s Guide for Permeable Concrete Pavement with Detention. Ohio Ready Mixed Concrete Association—PCP-2795, (2014). Information on: https://www.ohioconcrete.org/wp-content/uploads/2015/03/Updated-Final-Dec-1-2014-Ohio-Specifiers-Guide-Permeable-Conc1.pdf
Google Scholar
[15]
W. Li, L. Lang, D. Wang, Y. Wu, F.D. Li, Investigation on the dynamic shear modulus and damping ratio of steel slag mixtures, Constr. Build. Mater. 162 (2018) 170–180.
DOI: 10.1016/j.conbuildmat.2017.12.026
Google Scholar
[16]
G. Zhang, S. Wang, B. Wang, Y. Zhao, M. Kang, P. Wanga: Properties of permeable concrete with steel slag as aggregates and different mineral admixtures as binders, Construct. Build. Mater. 257 (2020) 119543.
DOI: 10.1016/j.conbuildmat.2020.119543
Google Scholar
[17]
J.J. Chang, W. Yeih, T.J. Chuang, R. Huang, Properties of permeable concrete made with electric arc furnace slag and alkali-activated slag cement, Constr. Build. Mater. 109 (2016) 34–40.
DOI: 10.1016/j.conbuildmat.2016.01.049
Google Scholar
[18]
H.L. Strieder, V.F. Pasa Dutra, A.G. Graeff, W.P. Nú˜nez, F.R. Meert Merten, Performance evaluation of permeable concrete pavements with recycled concrete aggregate, Construction and Building Materials 315 (2022) 125384.
DOI: 10.1016/j.conbuildmat.2021.125384
Google Scholar
[19]
H. El-Hassan, P. Kianmehr, S. Zouaoui, Properties of permeable concrete incorporating recycled concrete aggregates and slag, Constr. Build. Mater. 212 (2019) 164–175.
DOI: 10.1016/j.conbuildmat.2019.03.325
Google Scholar
[20]
R. Sriravindrarajah, N.D.H. Wang, L.J.W. Ervin, Mix Design for Permeable Recycled Aggregate Concrete, Concr, Struct. Mater. 6 (4) (2012) 239–246.
DOI: 10.1007/s40069-012-0024-x
Google Scholar
[21]
S.W.M. Supit, Priyono, Utilization of recycled PET plastic waste as replacement of coarse aggregate in permeable concrete, Materials Today: Proceedings 66 (2022) 2990–2995.
DOI: 10.1016/j.matpr.2022.06.573
Google Scholar
[22]
X. Chen, H. Wang, H. Najm, G. Venkiteela, J. Hencken, Evaluating engineering properties and environmental impact of permeable concrete with fly ash and slag, Journal of Cleaner Production 237 (2019) 117714.
DOI: 10.1016/j.jclepro.2019.117714
Google Scholar
[23]
J. Yang, G. Jiang, Experimental study on properties of permeable concrete pavement materials, Cem. Concr. Res. 33 (2003) 381–386.
Google Scholar
[24]
J. Kevern, W. Kejin, Mixture proportion development and performance evaluation of permeable concrete for overlay applications, Mater. J. 108 (2011) 439–448.
Google Scholar
[25]
L. Lang, H. Duan, B. Chen, Properties of permeable concrete made from steel slag and magnesium phosphate cement, Constr. Build. Mater. 209 (2019) 95–104.
DOI: 10.1016/j.conbuildmat.2019.03.123
Google Scholar
[26]
S.J. Fan, B. Chen, Experimental study of phosphate salts influencing properties of magnesium phosphate cement, Constr. Build. Mater. 65 (2014) 480–486.
DOI: 10.1016/j.conbuildmat.2014.05.021
Google Scholar
[27]
W. Yeih, J.J. Chang, The influences of cement type and curing condition on properties of permeable concrete made with electric arc furnace slag as aggregates, Constr. Build. Mater. 197 (2019) 813–820.
DOI: 10.1016/j.conbuildmat.2018.08.178
Google Scholar
[28]
S. Bright Singh, M. Murugan, Effect of metakaolin on the properties of permeable concrete. Constr. Build. Mater. 346 (2022) 128476.
Google Scholar
[29]
W. Huang, H. Wang, Multi-aspect engineering properties and sustainability impacts of geopolymer permeable concrete, Composites Part B 242 (2022) 110035.
DOI: 10.1016/j.compositesb.2022.110035
Google Scholar
[30]
O. Deo, N. Neithalath, Compressive response of permeable concretes proportioned for desired porosities, Constr. Build. Mater. 25 (2011) 4181–4189.
DOI: 10.1016/j.conbuildmat.2011.04.055
Google Scholar
[31]
K. Cosic, L. Korat, V. Ducman, I. Netinger, Influence of aggregate type and size on properties of permeable concrete, Constr. Build. Mater. 78 (2015) 69–76.
DOI: 10.1016/j.conbuildmat.2014.12.073
Google Scholar
[32]
P. Chindaprasrit, S. Hatanaka, T. Chareerat, N. Mishima, Y. Yuasa, Cement paste characteristics and porous concrete properties, Constr. Build. Mater. 22 (2008) 894‐901.
DOI: 10.1016/j.conbuildmat.2006.12.007
Google Scholar
[33]
F. Montes, S. Valavala, L.M. Haselbach, A New Test Method for Porosity Measurements of Portland Cement Permeable Concrete, J. ASTM Int. 2005, 2, JAI1293.
DOI: 10.1520/jai12931
Google Scholar
[34]
A. Yahia, K.D. Kabagire, New approach to proportion permeable concrete. Constr. Build. Mater. 62 (2014) 38–46.
Google Scholar
[35]
S. Nassiri, M. Rangelov, Z. Chen, Preliminary Study to Develop Standard Acceptance Tests for Permeable Concrete, Washington State Transportation Center (TRAC), Washington State University: Pullman, WA, USA, 2017.
Google Scholar
[36]
M. Kováč, A. Sičáková, Influence of Aggregate and Binder Content on the Properties of Permeable Concrete, KEM, 838 (2020) 3-9, Trans Tech Publications Ltd, Switzerland
Google Scholar
[37]
M. Suman, S. Abdus, A. Bashir, Effects of Fine Aggregates on the Properties of Permeable Concrete, DUET Journal, Vol. 3, Issue 1, December (2017)
Google Scholar
[38]
F. Zhang, N. Li, M. Guo, and X. Chi, Coarse aggregate effects on compressive strength and permeability coefficient of non-fine concrete, Electron. J. Geotech. Eng., 19 (2014) 8905–8913.
Google Scholar
[39]
G. Zhang, S. Wang, B. Wang, Y. Zhao, M. Kang, P. Wang, Properties of permeable concrete with steel slag as aggregates and different mineral admixtures as binders, Constr. Build. Mater. 257 (2020) 119543.
DOI: 10.1016/j.conbuildmat.2020.119543
Google Scholar
[40]
Z.A. Tunio et al, Effect of Coarse Aggregate Gradation and Water-Cement Ratio on Unit Weight and Compressive Strength of No-fines Concrete, Engineering, Technology & Applied Science Research 9 (1) (2019) 3786-3789.
DOI: 10.48084/etasr.2509
Google Scholar
[41]
Slovak Technical Standard STN 73 6124-2 (2013): Road Construction. Part 2: Concrete drainage layers. Slovak Office of Standards, Metrology and Testing: Bratislava, Slovakia.
Google Scholar
[42]
S.K. Sahdeo, G.D. Ransinchung, K.L. Rahul, S. Debbarma, Effect of mix proportion on the structural and functional properties of pervious concrete paving mixtures, Constr. Build. Mater., 255 (2020), Article 119260
DOI: 10.1016/j.conbuildmat.2020.119260
Google Scholar
[43]
M. Selvakumar, S. Geetha, S. Muthu Lakshmi, Optimization of permeable concrete with polymer for efficient storm water run-off, Materials Today: Proceedings 64 (2022) 995–999.
DOI: 10.1016/j.matpr.2022.05.084
Google Scholar