[1]
P.C. Aïtcin and S. Mindess, Sustainability of Concrete, New York: Spon Press, (2011)
Google Scholar
[2]
P. C. Aïtcin and R. J. Flatt Science and Technology of Concrete Admixtures, Sawston, Cambridge : Woodhead Publishing, (2015)
Google Scholar
[3]
P. Miarka, S. Seitl, M. Horňáková, P. Lehner, P. Konečný, O. Sucharda, V. Bílek. Influence of chlorides on the fracture toughness and fracture resistance under the mixed mode I/II of high-performance concrete, Theoretical and Applied Fracture Mechanics, 110, art. no. 102812, (2020)
DOI: 10.1016/j.tafmec.2020.102812
Google Scholar
[4]
P. Mateckova, V. Bilek, O. Sucharda, Comparative study of high-performance concrete characteristics and loading test of pretensioned experimental beams, Crystals, 11 (4), art. no. 427, (2021)
DOI: 10.3390/cryst11040427
Google Scholar
[5]
O. Sucharda, Z. Marcalikova, R. Gandel, Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement, Materials, 15 (16), art. no. 5707, (2022)
DOI: 10.3390/ma15165707
Google Scholar
[6]
Model Code 2010 - Final draft, fib, Bulletin no. 65 and 66, 1-2, (2012)
Google Scholar
[7]
Bilčík J., Fillo L, Benko V., Halvonik J. Concrete structures, STU v Bratislavě, 2008, ISBN 978- 80-227- 2940-6. (In Slovak)
Google Scholar
[8]
W. Piasta, W. Budzyński and J Góra, The effect of selected aggregates on the properties of high performance concrete [Wpływ wybranych kruszyw na właściwości betonu wysokowartościowego] Cement, Wapno, Beton, 2015 (3), pp.171-178. (2015)
Google Scholar
[9]
A. Strauss, T. et al., Stochastic fracture mechanical parameters for the performance-based design of concrete structures Structural Concrete vol 15 (3) pp.380-394. (2014)
DOI: 10.1002/suco.201300077
Google Scholar
[10]
Special Issue on Shear, Structural Concrete, 1/2018, vol 19 iss. 1, pp.1-328, (2018).
Google Scholar
[11]
T. Augustín, L. Fillo, J. Halvonik, M. Marčiš, Punching resistance of flat slabs with openings -experimental investigation, Solid State Phenomena, 272, pp.41-46. (2018)
DOI: 10.4028/www.scientific.net/SSP.272.41
Google Scholar
[12]
Z. Marcalikova, O. Sucharda Modeling of fiber-reinforced concrete and finite element method (2021) International Review of Civil Engineering, 12 (1), p.11 – 19. (2021)
DOI: 10.15866/IRECE.V12I1.18636
Google Scholar
[13]
V. Cervenka, L. Jendele, J. Cervenka J. ATENA Program documentation - Part 1: Theory. Cervenka Consulting. Pratur. (2016)
Google Scholar
[14]
A. Valikhani, A.J. Jahromi, I.M. Mantawy, A. Azizinamini, Numerical modelling of concrete-to-UHPC bond strength, Materials, 13 (6), art. no. 1379. (2020)
DOI: 10.3390/ma13061379
Google Scholar
[15]
Raček, M. Experimental testing of reinforced concrete beams. Theses. Ostrava, 2021. VSB-TU Ostrava, Faculty of Civil Engineering (FAST). Thesis supervisor: Oldrich Sucharda.
Google Scholar
[16]
ČSN EN 12504-2Testing concrete in structures – Part 2: Non-destructive testing – Determination of rebound number, Praha, (2023).
Google Scholar
[17]
ČSN 73 1371: Non-destructive testing of concrete – Method of ultrasonic pulse testing of concrete, Praha, (2011).
Google Scholar