[1]
A. Bentur, S. Mindess, Cementitious composites, in: Fiber Reinf. EMF. Compos., 2nd ed., Taylor & Francis, Oxon, 2007, p.1–7
DOI: 10.1016/0010-4361(79)90446-4
Google Scholar
[2]
ACI Committee 544, Guide for Design with Fiber Reinforced Concrete, 2018.
Google Scholar
[3]
S. Yin, R. Tuladhar, F. Shi, M. Combe, T. Collister, N. Sivakugan, Use of plastic macrofibers in concrete: a review, Constr. Build. Mate. 93 (2015) 180–188, https:// doi.org/.
DOI: 10.1016/j.conbuildmat.2015.05.105
Google Scholar
[4]
N. Yousefieh, A. Joshaghani, E. Hajibandeh, M. Shekarchi, Influence of fibers on drying shrinkage in restrained concrete, Constr. Build. Mate. 148 (2017) 833– 845
DOI: 10.1016/j.conbuildmat.2017.05.093
Google Scholar
[5]
Civil Engineering Committee of the Japanese Institute of Civil Engineers. (1991). "Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC)." Japan Society of Civil Engineers, Tokyo, p.52.
Google Scholar
[6]
Swamy, RN, Narayan, J., Roy, Chiam, TP (1993), Influence of steel fibers on shear strength of lightweight concrete I – Beams, ACI Structural Journal, Vol.90, No. 1, p.103 – 114
DOI: 10.14359/4201
Google Scholar
[7]
Shear behavior of concrete reinforced with steel fibers. (2012). Australasian Structural Engineering Conference. (p.8). Perth, Australia.
Google Scholar
[8]
CSA, Canadian Highway Bridge Design Code. Supplement No. 1 to CAN/CSA S6-14 (S6.1S1-14), Canadian Standards Association (CSA),, Mississauga, ON, Canada, 2014. ISBN 978-1-77139-412-3.
DOI: 10.1139/l92-117
Google Scholar
[9]
ACI 318-19 Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, 2019
DOI: 10.14359/51716937
Google Scholar
[10]
As3600, Concrete structures, Australian, Standards Australia, (2009)
Google Scholar
[11]
Zuaiter, M., El-Hassan, H., El-Maaddawy, T., El-Ariss, B. (2023). Flexural and shear performance of geopolymer concrete reinforced with hybrid glass fibers. Journal of Building Engineering.(72) https://www.sciencedirect.com/science/article/abs/pii/S2352710223007593
DOI: 10.1016/j.jobe.2023.106580
Google Scholar
[12]
AASHTO, (2017). Bridge Design Guide Specifications for GFRP Reinforced Concrete Bridge Decks and Traffic Railings, AASHTO LRFD-17, AASHTO, Washington, DC, USA. http://www.dot.state.mn.us/bridge/.
DOI: 10.1061/41016(314)11
Google Scholar
[13]
G. Danying, Z. Changhui, Shear strength prediction model of FRP bar-reinforced concrete beams without stirrups, Math. Probl. Eng. (2020) 1–11, https://doi. org/
DOI: 10.1155/2020/7516502
Google Scholar
[14]
D. Gao, C. Zhang, Shear strength calculating model of FRP bar reinforced concrete beams without stirrups, Eng. Struct. 221 (2020), 111025, https://doi.org/.
DOI: 10.1016/j.engstruct.2020.111025
Google Scholar
[15]
J.B. Ghazi, A.R. Yousif, Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis, Adv. Civ. Eng. (2018) 1–16.
DOI: 10.1155/2018/5157824
Google Scholar
[16]
R. Narayanan, I.Y.S. Darwish, Use of steel fibers as shear reinforcement, ACI Struct. J. 84 (3) (May 1987) 216–227.
DOI: 10.14359/2654
Google Scholar