[1]
B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014.
Google Scholar
[2]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A 375-377 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[3]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[4]
D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[5]
J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM 65 (2013) 1759-1771.
DOI: 10.1007/s11837-013-0761-6
Google Scholar
[6]
B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing, Boston, 1956.
Google Scholar
[7]
R.E. Reed-Hill, R. Abbaschian, R. Abbaschian, Physical metallurgy principles, Van Nostrand, New York, 1973.
Google Scholar
[8]
D.A. Porter, K.E. Easterling, Phase transformations in metals and alloys, third ed., CRC Press, London, 2009.
Google Scholar
[9]
B.T. Massalski, Phase diagrams in materials science, Metall. Trans. A 20 (1989) 1295-1323.
DOI: 10.1007/bf02665490
Google Scholar
[10]
D.G. Pettifor, Phenomenology and theory in structural prediction, J. Phase Equilib. 17, (1996) 384-399.
Google Scholar
[11]
M.D. de Graef, M.E. McHenry, Structure of Materials: An introduction to Crystallography, Diffraction and Symmetry, University Press, Cambridge 2012.
Google Scholar
[12]
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in CoaCraFeaMnaNi highentropy alloys, Acta Mater. 61 (2013) 4887-4897.
DOI: 10.1016/j.actamat.2013.04.058
Google Scholar
[13]
Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, S.J. Lin, Electrical, magnetic and Hall properties of AlxCoCrFeNi high-entropy alloys, J. Alloys Compd. 509 (2011) 1607-1614.
DOI: 10.1016/j.jallcom.2010.10.210
Google Scholar
[14]
J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of CuaNiaAlaCoaCraFeaSi alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46.
DOI: 10.1016/j.matchemphys.2007.01.003
Google Scholar
[15]
J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat. 31 (2006) 633-648.
DOI: 10.3166/acsm.31.633-648
Google Scholar
[16]
A. Kumar, R. Chandrakar, V. Dubey, M. Michalska-Domańska, High-Entropy Alloys: Processing, Alloying Element, Microstructure, and Properties, de Gruyter, Berlin, 2023.
DOI: 10.1515/9783110769470
Google Scholar
[17]
N. Ma, S. Liu, W. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao, Y. Wang, Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications, Front. Bioeng. Biotechnol. 8 (2020) 603522.
DOI: 10.3389/fbioe.2020.603522
Google Scholar
[18]
R. Nandhakumar, K. Venkatesan, A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness, Mater. Today Commun. 35 (2023) 105538.
DOI: 10.1016/j.mtcomm.2023.105538
Google Scholar
[19]
S. El-Hadad, High Entropy Alloys: The Materials of Future, Int. J. Mater. Technol. Innovation, 2 (2022) 67-84.
Google Scholar
[20]
D. Svetlizky, B. Zheng, A. Vyatskikh, M. Das, S. Bose, A. Bandyopadhyay, J. M. Schoenung, E.J. Lavernia, N. Eliaz, Laser-based directed energy deposition (DED-LB) of advanced materials, Mater. Sci. Eng., A 840 (2022) 142967.
DOI: 10.1016/j.msea.2022.142967
Google Scholar