Production Methods of High-Entropy Alloys

Article Preview

Abstract:

High-entropy alloys (HEAs) are a new and rapidly developing area of materials science, characterized by their high entropy content. High-entropy alloys have received considerable attention in recent years because of their properties, such as high tensile strength, corrosion resistance and excellent heat resistance. These materials have the potential to broaden material utilization in aerospace, automotive, energy, and other industries. There are three main manufacturing technology group to produce high entropy alloys. These groups are melting and casting, powder metallurgy, and deposition techniques. The manufacturing processes is essential to optimize the properties of the final product and meet the requirements of the application. The paper summarizes the four core effects and the production methods for high-entropy alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014.

Google Scholar

[2] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A 375-377 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[3] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[4] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[5] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM 65 (2013) 1759-1771.

DOI: 10.1007/s11837-013-0761-6

Google Scholar

[6] B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing, Boston, 1956.

Google Scholar

[7] R.E. Reed-Hill, R. Abbaschian, R. Abbaschian, Physical metallurgy principles, Van Nostrand, New York, 1973.

Google Scholar

[8] D.A. Porter, K.E. Easterling, Phase transformations in metals and alloys, third ed., CRC Press, London, 2009.

Google Scholar

[9] B.T. Massalski, Phase diagrams in materials science, Metall. Trans. A 20 (1989) 1295-1323.

DOI: 10.1007/bf02665490

Google Scholar

[10] D.G. Pettifor, Phenomenology and theory in structural prediction, J. Phase Equilib. 17, (1996) 384-399.

Google Scholar

[11] M.D. de Graef, M.E. McHenry, Structure of Materials: An introduction to Crystallography, Diffraction and Symmetry, University Press, Cambridge 2012.

Google Scholar

[12] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in CoaCraFeaMnaNi highentropy alloys, Acta Mater. 61 (2013) 4887-4897.

DOI: 10.1016/j.actamat.2013.04.058

Google Scholar

[13] Y.F. Kao, S.K. Chen, T.J. Chen, P.C. Chu, J.W. Yeh, S.J. Lin, Electrical, magnetic and Hall properties of AlxCoCrFeNi high-entropy alloys, J. Alloys Compd. 509 (2011) 1607-1614.

DOI: 10.1016/j.jallcom.2010.10.210

Google Scholar

[14] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Anomalous decrease in X-ray diffraction intensities of CuaNiaAlaCoaCraFeaSi alloy systems with multi-principal elements, Mater. Chem. Phys. 103 (2007) 41-46.

DOI: 10.1016/j.matchemphys.2007.01.003

Google Scholar

[15] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mat. 31 (2006) 633-648.

DOI: 10.3166/acsm.31.633-648

Google Scholar

[16] A. Kumar, R. Chandrakar, V. Dubey, M. Michalska-Domańska, High-Entropy Alloys: Processing, Alloying Element, Microstructure, and Properties, de Gruyter, Berlin, 2023.

DOI: 10.1515/9783110769470

Google Scholar

[17] N. Ma, S. Liu, W. Liu, L. Xie, D. Wei, L. Wang, L. Li, B. Zhao, Y. Wang, Research Progress of Titanium-Based High Entropy Alloy: Methods, Properties, and Applications, Front. Bioeng. Biotechnol. 8 (2020) 603522.

DOI: 10.3389/fbioe.2020.603522

Google Scholar

[18] R. Nandhakumar, K. Venkatesan, A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness, Mater. Today Commun. 35 (2023) 105538.

DOI: 10.1016/j.mtcomm.2023.105538

Google Scholar

[19] S. El-Hadad, High Entropy Alloys: The Materials of Future, Int. J. Mater. Technol. Innovation, 2 (2022) 67-84.

Google Scholar

[20] D. Svetlizky, B. Zheng, A. Vyatskikh, M. Das, S. Bose, A. Bandyopadhyay, J. M. Schoenung, E.J. Lavernia, N. Eliaz, Laser-based directed energy deposition (DED-LB) of advanced materials, Mater. Sci. Eng., A 840 (2022) 142967.

DOI: 10.1016/j.msea.2022.142967

Google Scholar