Reinforcement of Aluminium Matrix Composites with Particulate Agricultural Waste Derivatives for Automotive Applications: A Review

Article Preview

Abstract:

The automotive industry faces a significant challenge in meeting the increasing demand for lightweight and eco-friendly vehicles with reduced energy consumption and lower air pollution. This challenge is driven by factors such as consumer preferences, strict government regulations, technological complexities, cost considerations and market acceptance. Aluminium metal matrix composites (AMMCs) are novel materials with high suitability to address this challenge. Currently, AMMCs used in the automotive industry are reinforced with conventional synthetic ceramic particulates and they have shown tremendous improvements over unreinforced alloys. These composites have wear resistance and strengths equivalent to that of cast iron but with about 67% less density. However, synthetic reinforcements are expensive, have limited availability, possess high abrasiveness, cause unwanted reactions, pose recycling difficulties and their production leads to the emission of greenhouse gases. It is now pertinent to consider the use of agricultural waste derivatives as possible substitutes for these conventional reinforcements. In this work, the various agricultural waste derivatives that have been used to reinforce Al matrixes were reviewed and the potentials of the resulting composites as promising candidates for lightweight automotive applications were assessed. It was concluded that agricultural waste derivatives contained hard ceramics particles which improved the mechanical, tribological, thermal and corrosion properties of AMMCs, making agro-waste derivatives reinforced aluminium metal matrix composites promising for the production of novel lightweight automotive components.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-120

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Panwar, N. and Chauhan, A. (2018). Fabrication Methods of Particulate Reinforced Aluminium Metal Matrix, Composite -A Review. Mater Today 5, 5933–5939

DOI: 10.1016/j.matpr.2017.12.194

Google Scholar

[2] Venugopal, A. and Manoharan, N. (2015). Evaluation of Mechanical Properties of Aluminium Metal Matrix Composite for Marine Applications. ARPN J. Eng. Appl. Sci. 10, 5557–5559.

Google Scholar

[3] Ranjith, R., Kumar, G.S and Seenivasan, N. (2016) A Review on Advancements in Aluminium Matrix Composites. Int. J. Adv. Eng. Technol. VII, 173–176.

Google Scholar

[4] Ghasali, E., Shirvanimoghaddam, K., Pakseresht, A.H., Alizadeh, M, and Ebadzadeh, T. (2017) Evaluation of Microstructure and Mechanical Properties of Al-Tac Composites Prepared By Spark Plasma Sintering Process. J. Alloys Compd. 705, 283–289.

DOI: 10.1016/j.jallcom.2017.02.144

Google Scholar

[5] Rino, J.J., Chandramohan D., Sucitharan K.S and Jebin V.D. (2012) An overview on the development of aluminium metal matrix composites with hybrid reinforcement. IJSR India OnlineISSN :2319–7064.

DOI: 10.21275/ijsr13010104

Google Scholar

[6] Tjong, S.C. (2014) Processing and deformation characteristics of metals reinforced with ceramic nanoparticles. In: Tjong S-C, editor. Nanocrystalline materials [Internet]. 2nd ed. Oxford: Elsevier. p.269–304 [cited 2020 Aug 25]

DOI: 10.1016/b978-0-12-407796-6.00008-7

Google Scholar

[7] Alaneme, K.K, andBodunrin M.O. (2011) Corrosion Behavior of Alumina Reinforced Aluminium (6063) Metal Matrix Composites. J Miner Mater Charact Eng 2011; 10(12):1153.

DOI: 10.4236/jmmce.2011.1012088

Google Scholar

[8] Das D.K., Mishra, P.C, Singh S and Pattanaik S. (2014) Fabrication and Heat Treatment of Ceramic-Reinforced Aluminium Matrix Composites – A Review. Int J Mech Mater Eng; 9(1): 1–15.

DOI: 10.1186/s40712-014-0006-7

Google Scholar

[9] Alaneme K.K. and Olubambi P.A. (2013) Corrosion and Wear Behaviour of Rice Husk Ash-Alumina Reinforced Al-Mg-Si Alloy Matrix Hybrid Composites. J Mater Res Technol; 2(2): 188–94.

DOI: 10.1016/j.jmrt.2013.02.005

Google Scholar

[10] Alaneme, K. K. and Olubambi, P. A. (2013) "Corrosion and wear behaviour of rice husk ash Alumina reinforced Al-MgSi alloy matrix hybrid composites", j mater res tech-nol., Vol. 2(2), page. 188-189,.

DOI: 10.1016/j.jmrt.2013.02.005

Google Scholar

[11] Christy, T.V., Murugan, N. and Kumar S. A, (2010) "Comparative Study on the Microstructures and Mechanical Properties Of Al 6061 Alloy And The MMC Al 6061/Tib2/12". JMMCE pages 57-65.

DOI: 10.4236/jmmce.2010.91005

Google Scholar

[12] Alaneme K.K. and Bodunrin M.O. (2013) Mechanical Behaviour of Alumina Reinforced AA 6063 Metal Matrix Composites Developed By Two-Step – Stir Casting Process. Acta Tech Corvininesis – Bull Eng;6(3) [cited 2014 Aug 25]

Google Scholar

[13] Alaneme K.K and Aluko A.O. (2012) Production And Age-Hardening Behaviour of Borax Premixed Sic Reinforced Al-MgSi Alloy Composites Developed By Double Stir-Casting Technique. West Indian J Eng;34(1–2):80–5.

Google Scholar

[14] Bodunrin, M. O., Alaneme, K. K and Chown L. H. "Aluminium Matrix Hybrid Composites: A Review Of Reinforcement Philosophies; Mechanical, Corrosion And Tribological Characteristics" J MATER RES TECH N O L .2 0 1 5;4(4):434–445

DOI: 10.1016/j.jmrt.2015.05.003

Google Scholar

[15] Yaspal, Jawalkar, C. S., Verma, A. S., and Suri, N. M. (2017). Fabrication of Aluminium MMC with Particulate Reinforcement: A Review. Materials Today: Proceedings 4(2), 2927-2936.

DOI: 10.1016/j.matpr.2017.02.174

Google Scholar

[16] SirahbizuYigezuB., Mahapatra, M.M. and Jha, P.K. (2013) Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminium alloy metal matrix composite. J Miner Mater Charact Eng;1(4):124–30

DOI: 10.4236/jmmce.2013.14022

Google Scholar

[17] Nagender K. C., Yashpal K. and Chandrashekhar S.J. (2017) "Review on Analysis of Stir Cast Aluminium Metal Matrix Composite from Agro-Industrial

Google Scholar

[18] Alaneme, K. K., Ademilua, B. O., and Bodunrin, M. O. (2013). Mechanical Properties and Corrosion Behaviour of Aluminium Hybrid Composites Reinforced with Silicon Carbide and amboo Leaf Ash. Tribology in Industry, 35(1).

Google Scholar

[19] Prasad, D. S. and Krishna, R. A. (2011). Production and mechanical properties of A356. 2/RHA composites.International Journal of Advanced Science and Technology, 33, 51-58.

Google Scholar

[20] Aigbodion, V. S., Hassan, S. B., Dauda, E. T., and Mohammed, R. A. (2010). The development of the mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/bagasse ash particulate composites. Journal

DOI: 10.4236/jmmce.2010.910066

Google Scholar

[21] Oghenevweta, J. E., Aigbodion, V. S., Nyior, G. B., & Asuke, F. (2016). Mechanical properties and microstructural analysis of Al-Si–Mg/carbonized maize stalk waste particulate composites. Journal of King SaudUniversity-Engineering Sciences, 28(2), 222-229.

DOI: 10.1016/j.jksues.2014.03.009

Google Scholar

[22] Alaneme, K. K., Bodunrin, M. O. and Awe, A. A. (2016). Microstructure, mechanical, and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal King Saud UniversityEngineering Sciences.

DOI: 10.1016/j.jksues.2016.01.001

Google Scholar

[23] Apasi, A., Madakson, P. B., Yawas, D. S., and Aigbodion, V. S. (2012). Wear behaviour of Al-Si-Fe alloy/coconut shell ash particulate composites. Tribology in Industry, 1(34), 36-43

Google Scholar

[24] Aigbodion, V. S., & Ezema, I. C. (2020). Multifunctional A356 alloy/PKSAnp composites: Microstructure and mechanical properties. Defence Technology, 16(3), 731-736

DOI: 10.1016/j.dt.2019.05.017

Google Scholar

[25] Alaneme, K. K., & Olubambi, P. A. (2013). Corrosion and wear behaviour of rice husk ash— Alumina reinforced Al–Mg–Si alloy matrix hybrid composites. Journal of Materials Research and Technology, 2(2), 188-194.

DOI: 10.1016/j.jmrt.2013.02.005

Google Scholar

[26] Usman, A.M., Raji, A., Waziri, N. H., & Hassan, M. A. (2014). Aluminium alloy-rice husk ash composites production and analysis. Leonardo Electronic Journal of Practices and Technologies, 25(2), 84-98

Google Scholar

[27] Alaneme, K. K., Olubambi, P. A., Afolabi, A. S., & Bodurin, M. O. (2014). Corrosion and tribological studies of bamboo leaf ash and alumina reinforced Al-Mg-Si alloy matrix hybrid composites in chloride medium. International journal of electrochemical science, 9(10), 5663-5674.

DOI: 10.1016/s1452-3981(23)08196-8

Google Scholar

[28] Usman, A. M., Raji, A., Waziri, N. H., & Hassan, M. A. (2014). Production and characterisation of aluminium alloy-bagasse ash composites. IOSR Journal of Mechanical and Civil Engineering, 11(4), 38-44.

DOI: 10.9790/1684-11433844

Google Scholar

[29] Atuanya, C. U., Ibhadode, A. O. A., & Dagwa, I. M. (2012). Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Results in Physics, 2, 142-149.

DOI: 10.1016/j.rinp.2012.09.003

Google Scholar

[30] Alaneme, K. K., Babajide, A. F., Omotoyinbo, A. J., Borode, J. O., & Bodunrin, M. O. (2015). Corrosion and wear behavior of stir-cast aluminium-based hybrid composites reinforced with silicon carbide and corn cob ash. African Corrosion Journal, Official publication of the Corrosion Institute of Southern Africa, 1(2).

DOI: 10.1016/j.matpr.2022.02.099

Google Scholar

[31] Ochuokpa, E. O., Sumaila, D. S., & Adebisi, A. (2021). Development of aluminium based mango seed Mangiferaindica Shell ash (MSSA) particulate metal matrix composite. International Journal of Engineering Materials and Manufacture, 6(3), 176-186.

DOI: 10.26776/ijemm.06.03.2021.09

Google Scholar

[32] Alaneme, K. K., Fatile, B. O., & Borode, J. O. (2014). Mechanical and corrosion behaviour of Zn-27Al based composites reinforced with groundnut shell ash and silicon carbide. Tribology in Industry, 36(2), 195.

Google Scholar

[33] Babalola, P.O., Bolu, C.A., Inegbenebor, A.O., & Kilanko, O.(2018, September). Graphical representations of experimental and ANN predicted data for mechanical and electrical properties of AlSiC composite prepared by stir casting method. In IOP Conference Series: Materials Science and Engineering (Vol. 413, No. 1, p.012063). IOP Publishing.

DOI: 10.1088/1757-899x/413/1/012063

Google Scholar

[34] Atuanya, C. U., Ibhadode, A. O. A., & Dagwa, I. M. (2012). Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Results in Physics, 2, 142-149.

DOI: 10.1016/j.rinp.2012.09.003

Google Scholar

[35] Matsagar, B. M., & Wu, K. C. W. (2022). Agricultural waste-derived biochar for environmental management. In Biochar in Agriculture for Achieving Sustainable Development Goals (pp.3-13). Academic Press.

DOI: 10.1016/b978-0-323-85343-9.00026-4

Google Scholar

[36] McCormick K, Kautto N. The bioeconomy in Europe: an overview. Sustainability. 2013;5:2589-2608

DOI: 10.3390/su5062589

Google Scholar

[37] Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environment and Development. 2015;15:3-34

DOI: 10.1016/j.envdev.2015.03.006

Google Scholar

[38] Kulkarni, P. P., Siddeswarappa, B., & Kumar, K. S. H. (2019). A survey on effect of agro waste ash as reinforcement on aluminium base metal matrix composites. Open Journal of Composite Materials, 9(03), 312.

DOI: 10.4236/ojcm.2019.93019

Google Scholar

[39] Palanivendhan, M., Chandaradass, J., & Philip, J. (2021). Fabrication and mechanical properties of aluminium alloy/bagasse ash composite by stir casting method. Materials Today: Proceedings, 45, 6547-6552

DOI: 10.1016/j.matpr.2020.11.458

Google Scholar

[40] Bannaravuri, P. K., & Birru, A. K. (2018). Strengthening of mechanical and tribological properties of Al-4.5% Cu matrix alloy with the addition of bamboo leaf ash. Results in Physics, 10, 360-373.

DOI: 10.1016/j.rinp.2018.06.004

Google Scholar

[41] Ebenezer, N. S., Vinod, B., & Jagadesh, H. S. (2021). Effect of Heat Treatment on the Corrosion Behaviour of Nickel Surface-Deposited Agro-Reinforced Metal Matrix Composites. Journal of The Institution of Engineers (India): Series D, 102(2), 345-354.

DOI: 10.1007/s40033-021-00266-1

Google Scholar

[42] Atuanya, C. U., Aigbodion, V. S., & Nwigbo, S. C. (2012). Characterization of breadfruit seed hull ash for potential utilization in metal matrix composites for automotive application. Peoples Journal of Science and Technology, 2(1), 2249-5847.

DOI: 10.1016/j.matdes.2013.06.057

Google Scholar

[43] Madakson, P. B., Yawas, D. S., & Apasi, A. (2012). Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. International journal of engineering science and technology, 4(3), 1190-1198.

Google Scholar

[44] Mangalore, P., Akash, A., Ulvekar, A., Abhiram, A., Sanjay, J., & Advaith, A. (2019, March). Mechanical properties of coconut shell ash reinforced aluminium metal matrix composites. In AIP Conference Proceedings (Vol. 2080, No. 1). AIP Publishing.

DOI: 10.1063/1.5092897

Google Scholar

[45] Jose, J., Christy, T. V., Peter, P. E., Feby, J.A., George, A.J., Joseph, J., ... & Benjie, N.M. (2018). Manufacture and characterization of a novel agro-waste based low cost metal matrix composite (MMC) by compocasting. Materials Research Express, 5(6), 066530.

DOI: 10.1088/2053-1591/aac803

Google Scholar

[46] Babaremu, K. O., & Joseph, O. O. (2019, December). Experimental study of corncob and cow horn AA6063 reinforced composite for improved electrical conductivity. In Journal of Physics: Conference Series (Vol. 1378, No. 4, p.042048). IOP Publishing

DOI: 10.1088/1742-6596/1378/4/042048

Google Scholar