[1]
Panwar, N. and Chauhan, A. (2018). Fabrication Methods of Particulate Reinforced Aluminium Metal Matrix, Composite -A Review. Mater Today 5, 5933–5939
DOI: 10.1016/j.matpr.2017.12.194
Google Scholar
[2]
Venugopal, A. and Manoharan, N. (2015). Evaluation of Mechanical Properties of Aluminium Metal Matrix Composite for Marine Applications. ARPN J. Eng. Appl. Sci. 10, 5557–5559.
Google Scholar
[3]
Ranjith, R., Kumar, G.S and Seenivasan, N. (2016) A Review on Advancements in Aluminium Matrix Composites. Int. J. Adv. Eng. Technol. VII, 173–176.
Google Scholar
[4]
Ghasali, E., Shirvanimoghaddam, K., Pakseresht, A.H., Alizadeh, M, and Ebadzadeh, T. (2017) Evaluation of Microstructure and Mechanical Properties of Al-Tac Composites Prepared By Spark Plasma Sintering Process. J. Alloys Compd. 705, 283–289.
DOI: 10.1016/j.jallcom.2017.02.144
Google Scholar
[5]
Rino, J.J., Chandramohan D., Sucitharan K.S and Jebin V.D. (2012) An overview on the development of aluminium metal matrix composites with hybrid reinforcement. IJSR India OnlineISSN :2319–7064.
DOI: 10.21275/ijsr13010104
Google Scholar
[6]
Tjong, S.C. (2014) Processing and deformation characteristics of metals reinforced with ceramic nanoparticles. In: Tjong S-C, editor. Nanocrystalline materials [Internet]. 2nd ed. Oxford: Elsevier. p.269–304 [cited 2020 Aug 25]
DOI: 10.1016/b978-0-12-407796-6.00008-7
Google Scholar
[7]
Alaneme, K.K, andBodunrin M.O. (2011) Corrosion Behavior of Alumina Reinforced Aluminium (6063) Metal Matrix Composites. J Miner Mater Charact Eng 2011; 10(12):1153.
DOI: 10.4236/jmmce.2011.1012088
Google Scholar
[8]
Das D.K., Mishra, P.C, Singh S and Pattanaik S. (2014) Fabrication and Heat Treatment of Ceramic-Reinforced Aluminium Matrix Composites – A Review. Int J Mech Mater Eng; 9(1): 1–15.
DOI: 10.1186/s40712-014-0006-7
Google Scholar
[9]
Alaneme K.K. and Olubambi P.A. (2013) Corrosion and Wear Behaviour of Rice Husk Ash-Alumina Reinforced Al-Mg-Si Alloy Matrix Hybrid Composites. J Mater Res Technol; 2(2): 188–94.
DOI: 10.1016/j.jmrt.2013.02.005
Google Scholar
[10]
Alaneme, K. K. and Olubambi, P. A. (2013) "Corrosion and wear behaviour of rice husk ash Alumina reinforced Al-MgSi alloy matrix hybrid composites", j mater res tech-nol., Vol. 2(2), page. 188-189,.
DOI: 10.1016/j.jmrt.2013.02.005
Google Scholar
[11]
Christy, T.V., Murugan, N. and Kumar S. A, (2010) "Comparative Study on the Microstructures and Mechanical Properties Of Al 6061 Alloy And The MMC Al 6061/Tib2/12". JMMCE pages 57-65.
DOI: 10.4236/jmmce.2010.91005
Google Scholar
[12]
Alaneme K.K. and Bodunrin M.O. (2013) Mechanical Behaviour of Alumina Reinforced AA 6063 Metal Matrix Composites Developed By Two-Step – Stir Casting Process. Acta Tech Corvininesis – Bull Eng;6(3) [cited 2014 Aug 25]
Google Scholar
[13]
Alaneme K.K and Aluko A.O. (2012) Production And Age-Hardening Behaviour of Borax Premixed Sic Reinforced Al-MgSi Alloy Composites Developed By Double Stir-Casting Technique. West Indian J Eng;34(1–2):80–5.
Google Scholar
[14]
Bodunrin, M. O., Alaneme, K. K and Chown L. H. "Aluminium Matrix Hybrid Composites: A Review Of Reinforcement Philosophies; Mechanical, Corrosion And Tribological Characteristics" J MATER RES TECH N O L .2 0 1 5;4(4):434–445
DOI: 10.1016/j.jmrt.2015.05.003
Google Scholar
[15]
Yaspal, Jawalkar, C. S., Verma, A. S., and Suri, N. M. (2017). Fabrication of Aluminium MMC with Particulate Reinforcement: A Review. Materials Today: Proceedings 4(2), 2927-2936.
DOI: 10.1016/j.matpr.2017.02.174
Google Scholar
[16]
SirahbizuYigezuB., Mahapatra, M.M. and Jha, P.K. (2013) Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminium alloy metal matrix composite. J Miner Mater Charact Eng;1(4):124–30
DOI: 10.4236/jmmce.2013.14022
Google Scholar
[17]
Nagender K. C., Yashpal K. and Chandrashekhar S.J. (2017) "Review on Analysis of Stir Cast Aluminium Metal Matrix Composite from Agro-Industrial
Google Scholar
[18]
Alaneme, K. K., Ademilua, B. O., and Bodunrin, M. O. (2013). Mechanical Properties and Corrosion Behaviour of Aluminium Hybrid Composites Reinforced with Silicon Carbide and amboo Leaf Ash. Tribology in Industry, 35(1).
Google Scholar
[19]
Prasad, D. S. and Krishna, R. A. (2011). Production and mechanical properties of A356. 2/RHA composites.International Journal of Advanced Science and Technology, 33, 51-58.
Google Scholar
[20]
Aigbodion, V. S., Hassan, S. B., Dauda, E. T., and Mohammed, R. A. (2010). The development of the mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/bagasse ash particulate composites. Journal
DOI: 10.4236/jmmce.2010.910066
Google Scholar
[21]
Oghenevweta, J. E., Aigbodion, V. S., Nyior, G. B., & Asuke, F. (2016). Mechanical properties and microstructural analysis of Al-Si–Mg/carbonized maize stalk waste particulate composites. Journal of King SaudUniversity-Engineering Sciences, 28(2), 222-229.
DOI: 10.1016/j.jksues.2014.03.009
Google Scholar
[22]
Alaneme, K. K., Bodunrin, M. O. and Awe, A. A. (2016). Microstructure, mechanical, and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal King Saud UniversityEngineering Sciences.
DOI: 10.1016/j.jksues.2016.01.001
Google Scholar
[23]
Apasi, A., Madakson, P. B., Yawas, D. S., and Aigbodion, V. S. (2012). Wear behaviour of Al-Si-Fe alloy/coconut shell ash particulate composites. Tribology in Industry, 1(34), 36-43
Google Scholar
[24]
Aigbodion, V. S., & Ezema, I. C. (2020). Multifunctional A356 alloy/PKSAnp composites: Microstructure and mechanical properties. Defence Technology, 16(3), 731-736
DOI: 10.1016/j.dt.2019.05.017
Google Scholar
[25]
Alaneme, K. K., & Olubambi, P. A. (2013). Corrosion and wear behaviour of rice husk ash— Alumina reinforced Al–Mg–Si alloy matrix hybrid composites. Journal of Materials Research and Technology, 2(2), 188-194.
DOI: 10.1016/j.jmrt.2013.02.005
Google Scholar
[26]
Usman, A.M., Raji, A., Waziri, N. H., & Hassan, M. A. (2014). Aluminium alloy-rice husk ash composites production and analysis. Leonardo Electronic Journal of Practices and Technologies, 25(2), 84-98
Google Scholar
[27]
Alaneme, K. K., Olubambi, P. A., Afolabi, A. S., & Bodurin, M. O. (2014). Corrosion and tribological studies of bamboo leaf ash and alumina reinforced Al-Mg-Si alloy matrix hybrid composites in chloride medium. International journal of electrochemical science, 9(10), 5663-5674.
DOI: 10.1016/s1452-3981(23)08196-8
Google Scholar
[28]
Usman, A. M., Raji, A., Waziri, N. H., & Hassan, M. A. (2014). Production and characterisation of aluminium alloy-bagasse ash composites. IOSR Journal of Mechanical and Civil Engineering, 11(4), 38-44.
DOI: 10.9790/1684-11433844
Google Scholar
[29]
Atuanya, C. U., Ibhadode, A. O. A., & Dagwa, I. M. (2012). Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Results in Physics, 2, 142-149.
DOI: 10.1016/j.rinp.2012.09.003
Google Scholar
[30]
Alaneme, K. K., Babajide, A. F., Omotoyinbo, A. J., Borode, J. O., & Bodunrin, M. O. (2015). Corrosion and wear behavior of stir-cast aluminium-based hybrid composites reinforced with silicon carbide and corn cob ash. African Corrosion Journal, Official publication of the Corrosion Institute of Southern Africa, 1(2).
DOI: 10.1016/j.matpr.2022.02.099
Google Scholar
[31]
Ochuokpa, E. O., Sumaila, D. S., & Adebisi, A. (2021). Development of aluminium based mango seed Mangiferaindica Shell ash (MSSA) particulate metal matrix composite. International Journal of Engineering Materials and Manufacture, 6(3), 176-186.
DOI: 10.26776/ijemm.06.03.2021.09
Google Scholar
[32]
Alaneme, K. K., Fatile, B. O., & Borode, J. O. (2014). Mechanical and corrosion behaviour of Zn-27Al based composites reinforced with groundnut shell ash and silicon carbide. Tribology in Industry, 36(2), 195.
Google Scholar
[33]
Babalola, P.O., Bolu, C.A., Inegbenebor, A.O., & Kilanko, O.(2018, September). Graphical representations of experimental and ANN predicted data for mechanical and electrical properties of AlSiC composite prepared by stir casting method. In IOP Conference Series: Materials Science and Engineering (Vol. 413, No. 1, p.012063). IOP Publishing.
DOI: 10.1088/1757-899x/413/1/012063
Google Scholar
[34]
Atuanya, C. U., Ibhadode, A. O. A., & Dagwa, I. M. (2012). Effects of breadfruit seed hull ash on the microstructures and properties of Al–Si–Fe alloy/breadfruit seed hull ash particulate composites. Results in Physics, 2, 142-149.
DOI: 10.1016/j.rinp.2012.09.003
Google Scholar
[35]
Matsagar, B. M., & Wu, K. C. W. (2022). Agricultural waste-derived biochar for environmental management. In Biochar in Agriculture for Achieving Sustainable Development Goals (pp.3-13). Academic Press.
DOI: 10.1016/b978-0-323-85343-9.00026-4
Google Scholar
[36]
McCormick K, Kautto N. The bioeconomy in Europe: an overview. Sustainability. 2013;5:2589-2608
DOI: 10.3390/su5062589
Google Scholar
[37]
Scarlat N, Dallemand JF, Monforti-Ferrario F, Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environment and Development. 2015;15:3-34
DOI: 10.1016/j.envdev.2015.03.006
Google Scholar
[38]
Kulkarni, P. P., Siddeswarappa, B., & Kumar, K. S. H. (2019). A survey on effect of agro waste ash as reinforcement on aluminium base metal matrix composites. Open Journal of Composite Materials, 9(03), 312.
DOI: 10.4236/ojcm.2019.93019
Google Scholar
[39]
Palanivendhan, M., Chandaradass, J., & Philip, J. (2021). Fabrication and mechanical properties of aluminium alloy/bagasse ash composite by stir casting method. Materials Today: Proceedings, 45, 6547-6552
DOI: 10.1016/j.matpr.2020.11.458
Google Scholar
[40]
Bannaravuri, P. K., & Birru, A. K. (2018). Strengthening of mechanical and tribological properties of Al-4.5% Cu matrix alloy with the addition of bamboo leaf ash. Results in Physics, 10, 360-373.
DOI: 10.1016/j.rinp.2018.06.004
Google Scholar
[41]
Ebenezer, N. S., Vinod, B., & Jagadesh, H. S. (2021). Effect of Heat Treatment on the Corrosion Behaviour of Nickel Surface-Deposited Agro-Reinforced Metal Matrix Composites. Journal of The Institution of Engineers (India): Series D, 102(2), 345-354.
DOI: 10.1007/s40033-021-00266-1
Google Scholar
[42]
Atuanya, C. U., Aigbodion, V. S., & Nwigbo, S. C. (2012). Characterization of breadfruit seed hull ash for potential utilization in metal matrix composites for automotive application. Peoples Journal of Science and Technology, 2(1), 2249-5847.
DOI: 10.1016/j.matdes.2013.06.057
Google Scholar
[43]
Madakson, P. B., Yawas, D. S., & Apasi, A. (2012). Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. International journal of engineering science and technology, 4(3), 1190-1198.
Google Scholar
[44]
Mangalore, P., Akash, A., Ulvekar, A., Abhiram, A., Sanjay, J., & Advaith, A. (2019, March). Mechanical properties of coconut shell ash reinforced aluminium metal matrix composites. In AIP Conference Proceedings (Vol. 2080, No. 1). AIP Publishing.
DOI: 10.1063/1.5092897
Google Scholar
[45]
Jose, J., Christy, T. V., Peter, P. E., Feby, J.A., George, A.J., Joseph, J., ... & Benjie, N.M. (2018). Manufacture and characterization of a novel agro-waste based low cost metal matrix composite (MMC) by compocasting. Materials Research Express, 5(6), 066530.
DOI: 10.1088/2053-1591/aac803
Google Scholar
[46]
Babaremu, K. O., & Joseph, O. O. (2019, December). Experimental study of corncob and cow horn AA6063 reinforced composite for improved electrical conductivity. In Journal of Physics: Conference Series (Vol. 1378, No. 4, p.042048). IOP Publishing
DOI: 10.1088/1742-6596/1378/4/042048
Google Scholar