Rice Husk Ash Filled with Hydroxyapatite Based Composite for Biomedical Application

Article Preview

Abstract:

Despite several advantages of hydroxyapatite, the main shortcoming is its low mechanical properties. The aim of the research study is the production and characterization of Rice Husk Ash reinforced hydroxyapatite ceramic composite for bone repair. The effect of Rice Husk Ash content and sintering temperature on the wear rate, physical and mechanical properties of the fabricated composite was investigated. The porosities obtained for the samples range from 39±0.1 to 56.53±0.14%. The porosity obtained in this study falls within the range of 40 and 90% which makes it suitable for osteo-integration. The trend from the mechanical properties shows that the addition of the rice husk ash significantly improves the measurement since it serves as a barrier to the propagation of cracks and consequently serves as an additional toughening mechanism. The wear rates obtained for the samples are 0.036, 0006, 0.0016, 0.009 for 0, 0.5, 1, and 1.5 wt.%RHA respectively. This shows that the wear rate of the samples reduces drastically with the addition of the rice husk.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-130

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. W. Johnson, B. A. Herschler, A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta biomaterialia, 7(1) (2011) 16-30.

DOI: 10.1016/j.actbio.2010.07.012

Google Scholar

[2] A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications. Advances in colloid and interface science, 249 (2017) 321-330.

DOI: 10.1016/j.cis.2017.04.007

Google Scholar

[3] N. I. Agbeboh, I. O. Oladele, O. O. Daramola, A. D. Akinwekomi, M. O. Tanimola, O. Olasukanmi, Comparing the effects of two wet precipitation methods on the yield of chicken eggshell-derived hydroxyapatite. Futa J. Eng. Eng. Technol, 16 (2022) 95-104.

DOI: 10.51459/futajeet.2022.16.1.350

Google Scholar

[4] T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33(26) (2012) 6020-6041.

DOI: 10.1016/j.biomaterials.2012.04.050

Google Scholar

[5] V. Sansone, D. Pagani, M. Melato, The effects on bone cells of metal ions released from orthopaedic implants. A review. Clinical Cases in Mineral and Bone Metabolism, 10(1) (2013) 34.

DOI: 10.11138/ccmbm/2013.10.1.034

Google Scholar

[6] B. D. Ulery, L. S. Nair, C. T. Laurencin, Biomedical applications of biodegradable polymers. Journal of polymer science Part B: polymer physics, 49(12) (2011) 832-864.

DOI: 10.1002/polb.22259

Google Scholar

[7] G. M. Raghavendra, K. Varaprasad, T. Jayaramudu, Biomaterials: design, development and biomedical applications. In Nanotechnology applications for tissue engineering William Andrew Publishing. 2015.

DOI: 10.1016/b978-0-323-32889-0.00002-9

Google Scholar

[8] K. Wang, C. Zhou, Y. Hong, X. Zhang, A review of protein adsorption on bioceramics. Interface focus, 2(3) (2012) 259-277.

DOI: 10.1098/rsfs.2012.0012

Google Scholar

[9] J. S. Temenoff, A. G. MikosBiomaterials: the intersection of biology and materials science (Vol. 1). Upper Saddle River, NJ, USA: Pearson/Prentice Hall, 2008.

Google Scholar

[10] D. O. Obada, S. A. Osseni, H. Sina, A. N. Oyedeji, K. A. Salami, E. Okafor,... E. T. Dauda, Hydroxyapatite materials-synthesis routes, mechanical behavior, theoretical insights, and artificial intelligence models: a review. Journal of the Australian Ceramic Society, 59(3) (2023) 565-596.

DOI: 10.1007/s41779-023-00854-2

Google Scholar

[11] K. J. Burg, S. Porter, J. F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials, 21(23) (2000) 2347-2359.

DOI: 10.1016/s0142-9612(00)00102-2

Google Scholar

[12] I. R. Oliveira, T. L. Andrade, K. C. M. L. Araujo, A. P. Luz, V. C. Pandolfelli, Hydroxyapatite synthesis and the benefits of its blend with calcium aluminate cement. Ceramics International, 42(2) (2016) 2542-2549.

DOI: 10.1016/j.ceramint.2015.10.056

Google Scholar

[13] R. Z. LeGeros, Calcium phosphate-based osteoinductive materials. Chemical reviews, 108(11) (2008) 4742-4753.

DOI: 10.1021/cr800427g

Google Scholar

[14] D.O. Obada, S.A. Osseni, H. Sina, A.N. Oyedeji, K.A. Salami, E. Okafor, E.T. Dauda, Hydroxyapatite materials-synthesis routes, mechanical behavior, theoretical insights, and artificial intelligence models: a review. Journal of the Australian Ceramic Society, 1-32. (2023)

DOI: 10.1007/s41779-023-00854-2

Google Scholar

[15] M. A. Adamu, M. Sumaila, M. Dauda, & T. Ause, Production and optimization of novel rice husk ash reinforced polycaprolactone/hydroxyapatite composite for bone regeneration using grey relational analysis. Scientific African, 19 (2023) e01563.

DOI: 10.1016/j.sciaf.2023.e01563

Google Scholar

[16] X. Zhao, L. Zhang, X. Wang, J. Yang, F. He, Y. Wang, Preparation and mechanical properties of controllable orthogonal arrangement of carbon fiber reinforced hydroxyapatite composites. Ceramics International, 44(7) (2018) 8322-8333.

DOI: 10.1016/j.ceramint.2018.02.020

Google Scholar

[17] D. Arcos, M. Vallet-Regí, Sol–gel silica-based biomaterials and bone tissue regeneration. Acta biomaterialia, 6(8), (2010) 2874-2888.

DOI: 10.1016/j.actbio.2010.02.012

Google Scholar

[18] E. S. Akpan, M. Dauda, L. S. Kuburi, D. O. Obada, D. Dodoo-Arhin, A comparative study of the mechanical integrity of natural hydroxyapatite scaffolds prepared from two biogenic sources using a low compaction pressure method. Results in Physics, 17, (2020) 103051.

DOI: 10.1016/j.rinp.2020.103051

Google Scholar

[19] A. Kusakabe, K. Hirota, T. Mizutani, Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybridmaterials. Mater. Sci. Eng. C 70, (2017) 487–493.

DOI: 10.1016/j.msec.2016.09.006

Google Scholar

[20] D. O. Obada, E. T. Dauda, J. K. Abifarin, N. D. Bansod, D. Dodoo-Arhin, Mechanical measurements of pure and kaolin reinforced hydroxyapatite-derived scaffolds: A comparative study. Materials Today: Proceedings, 38, (2021) 2295-2300.

DOI: 10.1016/j.matpr.2020.06.412

Google Scholar

[21] T. Wu, J. Su, Y. Li, H. Zhao, Y. Zhang, M. Zhang, B. Wu, Wear resistance mechanism of alumina ceramics containing Gd2O3. Materials, 11(10), (2018) 2054.

DOI: 10.3390/ma11102054

Google Scholar

[22] S. Kannan, S. I. Vieira, S. M. Olhero, S. Pina, O. D. C. Silva, J. M. F. Ferreira, Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomaterialia, 7(4), (2011)1835-1843.

DOI: 10.1016/j.actbio.2010.12.009

Google Scholar

[23] G. Anbalagan, A. R. Prabakaran, S. Gunasekaran, Spectroscopic characterization of indian standard sand. Journal of Applied Spectroscopy, 77(1), (2010) 86–94.

DOI: 10.1007/s10812-010-9297-5

Google Scholar

[24] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26 (27), (2005) 5474–5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[25] J. Ren, K. Kyohan, K Seock Sam, Jingri Ren, Kyohan Kim, Seock Sam Kim. Fracture and tribological evaluation of dental composite resins containing pre-polymerized particle fillers. J Mater Sci Technol,19(3), (2003) 249e52.

Google Scholar