Modification of the Chitosan Spray Coating on Pineapple Pulp as Adsorbent for Copper Ion Adsorption from Aqueous Solution

Article Preview

Abstract:

One of the major toxicants for living things is copper which consists of ions form in most of the manufacturing wastewater treatment. The drain water before releasing it into the water source is desired to eliminate copper ions (Cu2+) by using adsorption. The bio-wastes as adsorbents applied in this work, such as a dried pineapple pulp (DPP), chitosan flake (CTS), and chitosan spray coating on dried pineapple pulp (CPP) have a surface area of about 45.34, 60.02, and 70.01 m2/g, respectively. The effective Cu2+ eliminated efficiency and adsorption capacity from the copper (II) sulfate in aqueous solution was high with the high surface area. At optimum operating conditions, i.e., initial feed concentration 250 mg/L, pH 6.0, temperature 30 °C, and adsorption time 1 h, the Cu2+ eliminated efficiency in the percentage of DPP, CTS, and, CCP was 63.89, 80.83 and 86.92%, respectively, and adsorption capacity was 31.95, 40.22 and 43.46 mg/g, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-18

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Charnkeitking and S. Sripiboon: Key Eng. Mater. Vol.974, (2024), p.57.

Google Scholar

[2] P. Charnkeitkong and S. Sripiboon: Mater. Sci. Forum. Vol. 1086 (2023), p.107

Google Scholar

[3] S. Sripiboon and P. Charnkeitkong: Mater. Sci. Forum. Vol. 1086, (2023), p.115

Google Scholar

[4] P. Charnkeitking and S. Sripiboon: Key Eng. Mater. Vol.888, (2021), p.99

Google Scholar

[5] S. Mariappan and R. Issac: J. Curr. Sci. Technol. Vol.12 (2023), p.372

Google Scholar

[6] P. Charnkeitkong and R. Phoophuangpairoj: IOP Conf. Ser.: Mater. Sci. Eng. Vol. 733 (2020), A. 012043

DOI: 10.1088/1757-899x/733/1/012043

Google Scholar

[7] W. Dungkaew, S. Jiajaroen, C. Theppitak, D. Sertphon, and K. Chainok: J. Curr. Sci. Technol. Vol. 9 (2023), p.29.

Google Scholar

[8] Information on https://www.sigmaaldrich.com

Google Scholar

[9] Information on https://www.mordorintelligence.com/industry-reports/copper-market

Google Scholar

[10] K. Asokan, P.A. Vivekanand and S. Muniraj: Materials Today: Proceedings. Vol. 36 (2021), p.883

Google Scholar

[11] V. Krstić, T. Urošević and B. Pešovski: Chem. Eng. Sci. Vol.192 (2018), p.273

Google Scholar

[12] B. Rajesh, and S. Khandeshwar: Key Eng. Mater. Vol. 960 (2023), p.171

Google Scholar

[13] E. Khademian, E. Salehi, H. Sanaeepur, F. Galiano and A. Figoli: Sci. Total Environ. Vol.738 (2020), A. 139829

DOI: 10.1016/j.scitotenv.2020.139829

Google Scholar

[14] K. Iamsaard, C.H. Weng, J.H. Tzeng, J. Anatai and A.R. Jacobsan: Bioresour. Technol. Vol.382 (2023), A. 129131

Google Scholar

[15] G.A. Burk, A. Herath, G.B. Crisler, D. Bridges, S. Patel, C.U. Pittmanand, and T. Mlsna: Front. Environ. Sci. Vol. 8 (2020), A. 541203

Google Scholar

[16] F. Ariani, A. Suratman and D. Siswanta: Key Eng. Mater. Vol.949 (2023), p.57

Google Scholar

[17] R. Katiyar, A. K. Patel, T. Nguyen, R.R. Singhania, C.W. Chen and C.D. Dong: Bioresour. Technol. Vol. 328, (2021), A. 124829

Google Scholar

[18] M. K. Zadrożnaa, U. Filipkowskab, T. Jóźwiakb: J. Environ. Chem. Eng. Vol.8 (2020), A. 10387

Google Scholar

[19] H. Khurshid, M.R.U. Mustafa, and M. H. Isa: Environ. Research. Vol.212 (2022), A. 113138

Google Scholar