Textile Wastewater Treatment Using Activated Graphene-Like Biochar Derived from Onion Peel Biomass

Article Preview

Abstract:

Allium cepa L., popularly known as onion, has many benefits aside from being used as a vegetable. This study explored onion peel biomass by converting it to biochar (BC) followed by activation with KOH under optimal temperature and mix ratio. Various characterizations such as Raman, SEM, XRD and BET were performed to examine the surface and morphological properties of the activated biochar. The developed BC was utilized to treat textile wastewater composing methyl orange (MO) dye. The KOH-activated onion peel biochar showed a surface area of 1725.6 m2/g, resulting in a maximum dye adsorption capacity of 454.54 mg/g. Raman spectroscopy further revealed the existence of graphene-like structures of the biochar. The adsorption kinetics show that BC follows the pseudo-second-order model with an R2 of 0.9988. The isotherm experiments also conformed to the Langmuir model with an R2 of 0.9958. The influence of pH was studied, and results showed higher removal efficiencies at a pH of 2. Finally, the regeneration and recyclability of the prepared adsorbent was run for three successive cycles, after which it maintained appreciable adsorption capacity and removal efficiencies. Overall, the BC derived from onion peel demonstrated that it could be a promising alternative and high-performance adsorbent for treating textile wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Vliet, M. TH, E.R. Jones, M.T. Flörke, W.H.P. Franssen, N. Hanasaki, Y. Wada and J.R. Yearsley: Environmental Research Letters 16. no. 2 (2021).

Google Scholar

[2] M. Kamali, L. Appels, E. E. Kwon, T. M. Aminabhavi, and R. Dewil: Chemical Engineering Journal. vol. 420 (2021) 129946.

DOI: 10.1016/j.cej.2021.129946

Google Scholar

[3] K. D. Sharma and S. Jain: Social Responsibility Journal. vol. 16. no. 6 (2020) 917–948.

Google Scholar

[4] P. Krasucka, B. Pan, Y. Sik Ok, D. Mohan, B. Sarkar, and P. Oleszczuk: Chemical Engineering Journal. vol. 405 (2021) 126926.

DOI: 10.1016/j.cej.2020.126926

Google Scholar

[5] F. Amalina, A. S. A. Razak, S. Krishnan, A. W. Zularisam, and M. Nasrullah: Cleaner Waste Systems. vol. 3 (2022) 100051.

DOI: 10.1016/j.clwas.2022.100051

Google Scholar

[6] K. Safo, H. Noby, M. Matatoshi, H. Naragino, and A. H. El-Shazly: Research on Chemical Intermediates. vol. 48 (2022) 4183–4208.

DOI: 10.1007/s11164-022-04807-5

Google Scholar

[7] K. Nihan and Z.Y. Uzun: Biomass Conversion and Biorefinery. 11 (2021).

Google Scholar

[8] A.M. Omar, A. Hassen, O.I. Metwalli, M.R. Saber, S.R. Mohamed, A.S. Khalil: (2021). Nanotechnology. 32(33), p.335605.

Google Scholar

[9] Y. Dai, N. Zhang, C. Xing, Q. Cui, and Q. Sun: Chemosphere. vol. 223 (2019) 12–27.

Google Scholar

[10] M. Bilal, I. Ihsanullah, M. U. Hassan Shah, A. V. Bhaskar Reddy, and T. M. Aminabhavi: Journal of Environmental Management. vol. 321 (2022) 115981.

DOI: 10.1016/j.jenvman.2022.115981

Google Scholar

[11] H. He, R. Zhang, P. Zhang, N. Chen, B. Qian, L. Zhang, J. Yu, B. Dai: Advanced Science. (2023) 2205557.

Google Scholar

[12] N. M. Musyoka, B. K. Mutuma, and N. Manyala: RSC Adv. vol. 10. no. 45 (2020) 26928–26936.

DOI: 10.1039/d0ra04556j

Google Scholar

[13] B. Krishnappa, S. Saravu, J. M. Shivanna, M. Naik, and G. Hegde: Environmental Science and Pollution Research. vol. 29 (2022) 79067–79081.

DOI: 10.1007/s11356-022-21251-5

Google Scholar

[14] B. R. Patra, A. Mukherjee, S. Nanda, and A. K. Dalai: Environmental Chemistry Letters. vol. 19 (2021) 2237–2259.

Google Scholar

[15] S. Liu, Y. Wang, Z. Feng, Y. Wang, and T. Sun: New Journal of Chemistry. vol. 45 (2021) 17418–17427.

Google Scholar

[16] K. Gupta, D. Gupta, and O. P. Khatri: Appl Surf Sci. vol. 476 (2019) 647–657.

Google Scholar

[17] Y. Hou, Y. Liang, H. Hu, Y. Tao, J. Zhou, and J. Cai: Bioresour Technol. vol. 329 (2021) 124877.

Google Scholar

[18] L. Sunthar, T. Asharp, and K. Nadarajah: Water Air Soil Pollut. vol. 234 (2023).

Google Scholar

[19] A. Ouedrhiri, M.A Himi, B. Youbi, Y. Lghazi, J. Bahar, C. El Haimer, A. Aynaou, I. Bimaghra: Materials Today: Proceedings. (2022) 66:259-67.

DOI: 10.1016/j.matpr.2022.04.928

Google Scholar

[20] B. Zhang, Y. Wu, L. Cha: Journal of Dispersion Science and Technology. (2019).

Google Scholar

[21] O. Kayanja, A.A. Abdel-Aty, M.A. Hassan, A. Hassanin, H. Ohashi, A.S. Khalil: 2023. A Review on TMDCs Nanomaterials and Their Surface Engineered Polymeric Membrane Nanocomposites for Water Remediation and Wastewater Treatment. Surfaces and Interfaces, p.103578.

DOI: 10.1016/j.surfin.2023.103578

Google Scholar

[22] A. Gopalakrishnan, S. Badhulika: (2021). Journal of Energy Storage. 38. P.102533.

Google Scholar

[23] H. Zhang, R. Li, Z. Zhang: (2022). Environmental Pollution. 293. P.118517.

Google Scholar

[24] A.M. Omar, O.I. Metwalli, M.R. Saber, G. Khabiri, M.E. Ali, A. Hassen, M.M. Khalil, A.A. Maarouf, A.S. Khalil: (2019). RSC advances. 9(49) pp.28345-28356.

DOI: 10.1039/c9ra05427h

Google Scholar

[25] A.F. Meese, D.J Kim, X. Wu, L, Le, C. Napier, M.T, Hernandez, N. Laroco, K.G. Linden, J Cox, P. Kurup, J. McCall:. ACS ES&T Engineering. 2021. ;2(3):465-88.

DOI: 10.1021/acsestengg.1c00282

Google Scholar

[26] U.N. Murthy, H.B. Rekha, J.G. Bhavya: journal of environmental science and development. 2011 1;2(6):483

Google Scholar

[27] A.Rahman, N. Kishimoto, T. Urabe: International Journal of Environmental Science and Development. 2013 1;4(5):558.

Google Scholar

[28] A.K. Verma, P. Bhunia, R.R. Dash: International Journal of Environmental Science and Development. 2012 1;3(2):118.

Google Scholar