Modeling of Fatigue/Creep in Polymer Cage of Large Size Bearing

Article Preview

Abstract:

A single pocket cage is the SKF product, which is used in Large Size Bearings for wind industry. The function of a bearing cage is to hold, guide and separate rolling elements, and differently from the conventional cage, the current one consists of segments, which eases the bearing assembly and reduces its weight. The long life challenge (25 years!) requires considering fatigue, and since the single pocket cage is made of PEEK polymer, it is also susceptible to creep (in near room temperature), which enhances fatigue damage. The current work proposes the numerical model capturing non-linear viscoelasticity of PEEK. The mechanical behavior of this material is identified in uniaxial tension test and is modeled in Finite Elements (FE) by means of the Parallel Rheological Framework (this numerical tool has been recently implemented in the commercial software ABAQUS). The current FE model enables to apply cyclic loading, simulating the material response of cage when it operates in running bearing. By applying sub-modeling technique only a small domain is modeled which improves the computational time efficiency. The sub-model domain corresponds to the cage region, where the stress is high resulting to the material yielding, fatigue/creep degradation (due to inelastic cyclic deformation) and initiation of fatigue crack. The FE results were combined with the test data, in attempt to relate the numerically predicted damage to the cage life. The development of irreversible deformation during cyclic loading, shakedown analysis and the stress volume effect, are the main focuses of the current work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-18

Citation:

Online since:

January 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. E. Morales-Espejel, A. Gabelli, The progression of surface rolling contact fatigue damage of rolling bearing, Evolution – SKF business & technology magazine (2015) https://evolution.skf.com/the-progression-of-surface-rolling-contact-fatigue-damage-of-rolling-bearings/

DOI: 10.1080/10402004.2014.983251

Google Scholar

[2] A.V. Olver. The mechanism of rolling contact fatigue: an update, Proc. IMechE, 219, Part J, J. Eng. Tribol. (2005) 313–331.

Google Scholar

[3] G.E. Morales-Espejel, A. Gabelli, The progression of surface rolling contact fatigue damage of rolling bearings with artificial dents, Tribol. Transactions, 58 (2015) 418–431.

DOI: 10.1080/10402004.2014.983251

Google Scholar

[4] M.H. Nazir, Z.A. Khan, A. Saeed, Experimental analysis and modelling of C-crack propagation in silicon nitride ball bearing element under rolling contact fatigue, Tribol. Int., 126 (2018) 386-401.

DOI: 10.1016/j.triboint.2018.04.030

Google Scholar

[5] Y. Kadin, C. Vieillard, J. Wensing, A. Theerthan, Finite Elements modelling and assessment of ceramic rollers with edge cracks, Proc. Struct. Integrity, 57 (2024) 236–249.

DOI: 10.1016/j.prostr.2024.03.026

Google Scholar

[6] Q. Chen, S. Jiang, D. Duan, Fracture analysis and working stress calculation of bearing cage used in charging pump in a nuclear power plant, Metals, 13-1380 (2023) 1-14.

DOI: 10.3390/met13081380

Google Scholar

[7] A.M. Alshoaibi, Y.A. Fageehi, A comparative analysis of 3D software for modeling fatigue crack growth: a review, Appl. Sci., 14-1848 (2024) 2-20.

DOI: 10.3390/app14051848

Google Scholar

[8] C. Guster, G. Pinter, A. Mösenbacher, W. Eichlseder, Evaluation of a simulation process for fatigue life calculation of short fibre reinforced plastic components, Proc. Eng., 10 (2011) 2104–2109.

DOI: 10.1016/j.proeng.2011.04.348

Google Scholar

[9] A. Vencl, V. Gašić, B. Stojanović, Fault tree analysis of most common rolling bearing tribological failures, IOP Conf. Ser.: Mater. Sci. Eng., 174-012048 (2017) 1-10.

DOI: 10.1088/1757-899x/174/1/012048

Google Scholar

[10] N. Nosrati, A. Zabett, S. Sahebian, Stress dependency of creep response for glass/epoxy composite at nonlinear and linear viscoelastic behaviour, Int. J. Polymer Sci. (Hindawi), Article ID 9733138 (2022) 1-11.

DOI: 10.1155/2022/9733138

Google Scholar

[11] L. Pastukhov, Long-term Performance of Fibre-reinforced Thermoplastics, PhD Thesis, TU Eindhoven, the Netherlands, 2019.

Google Scholar

[12] Y. Kadin, R. Schaake, Modeling viscoelasticity and cyclic creep of PEEK by parallel rheological framework (PRF), European J. Mech. - A/Solids 104 (2023) 105216.

DOI: 10.1016/j.euromechsol.2023.105216

Google Scholar

[13] T.B. Van Erp, C.T. Reynolds, T. Peijs, J.A.W., Van Dommelen, L.E. Govaert, Prediction of yield and long-term failure of oriented polypropylene: kinetics and anisotropy, J. Polymer Sci.: Part B: Polymer Phys., 47 (2009) 2026-2035.

DOI: 10.1002/polb.21801

Google Scholar

[14] E. Parodi, Structure Properties Relations for Polyamide 6, PhD Thesis, TU Eindhoven, the Netherlands, 2017.

Google Scholar

[15] ABAQUS/Standard User's Manual.

Google Scholar

[16] P.H. Foss, H.C. Tseng, J. Snawerdt, Y.J. Chang, W.H. Yang, C.H. Hsu, Prediction of fiber orientation distribution in injection molded parts using Moldex3D simulation, Polymer Composites, 35 (2014) 671–680.

DOI: 10.1002/pc.22710

Google Scholar

[17] S.G. Advani, C.L. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheology, 31 (1987) 751-784.

DOI: 10.1122/1.549945

Google Scholar

[18] A. Amiri-Rad, L.V. Pastukhov, L.E. Govaert, J.A.W. Van Dommelen, An anisotropic viscoelastic-viscoplastic model for short-fiber composites, Mech. Mater., 137 (2019) 103141.

DOI: 10.1016/j.mechmat.2019.103141

Google Scholar

[19] R.B. Colby, Equivalent Plastic Strain for the Hill's Yield Criterion under General Three-dimensional Loading, BSc Thesis, Massachusetts Institute of Technology (MIT), MA, USA, 2013.

Google Scholar

[20] S.W. Tsai, E. M. Wu, A general theory of strength for anisotropic materials, J. Composite Mater., 5 (1971) 58-80.

Google Scholar

[21] P.V. Osswald, T.A. Osswald, A strength tensor based failure criterion with stress interactions, Polymer Composites, 39 (2018) 2826–2834.

DOI: 10.1002/pc.24275

Google Scholar

[22] J.A. Williams, The influence of repeated loading, residual stresses and shakedown on the behaviour of tribological contacts, Tribol. Int., 38 (2005) 786–797.

DOI: 10.1016/j.triboint.2005.02.006

Google Scholar

[23] M. Abdel-Karim, Shakedown of complex structures according to various hardening rules. Int. J. Pressure Vessels and Piping 82 (2005) 427-458.

DOI: 10.1016/j.ijpvp.2005.01.007

Google Scholar

[24] J. Hodowany, G. Ravichandran, A.J. Rosakis, P. Rosakis, Partition of plastic work into heat and stored energy in metals, Experimental Mech., 40 (2000) 113–123.

DOI: 10.1007/bf02325036

Google Scholar

[25] D.L. McDowell, F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, Int. J. Fatigue, 32 (2010) 1521-1542.

DOI: 10.1016/j.ijfatigue.2010.01.003

Google Scholar

[26] A. Launay, M.H. Maitournam, Y. Marco, I. Raoult, Multiaxial fatigue models for short glass fibre reinforced polyamide. Part II: fatigue life estimation, Int. J. Fatigue, 47 (2013) 390-406.

DOI: 10.1016/j.ijfatigue.2012.09.015

Google Scholar

[27] S. Mortazavian, A. Fatemi, Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review, Int. J. Fatigue, 70 (2015) 297-321.

DOI: 10.1016/j.ijfatigue.2014.10.005

Google Scholar

[28] H. Stadler, Effect of frequency, R-ratio and test specimen configuration on fatigue crack growth in PE pipe materials, Diploma Thesis, Institute for Materials Science and Testing of Plastics of the University of Leoben and Polymer Competence Center Leoben GmbH, Austria, 2006.

DOI: 10.24132/csrn.3301.92

Google Scholar

[29] K. S. Saib, W. J. Evans, D. H. Isaac, The fatigue crack propagation behaviour of short carbon fibre reinforced PEEK composites, Fracture of Eng. Mater. Structures, Proceedings of the Joint FEFG/ICF Int. Conf. (1991) 215-220.

DOI: 10.1007/978-94-011-3650-1_30

Google Scholar

[30] H. Liu, A. Ojha, Z. Li, C.C. Engler-Pinto Jr., X. Su, Q. Sun, H. Kang, W. Wen, H. Cui, Fatigue modeling for carbon/epoxy unidirectional composites under various stress ratios considering size effects, Int. J. Fatigue, 120 (2019) 184-200.

DOI: 10.1016/j.ijfatigue.2018.11.009

Google Scholar

[31] M. Mejri, L. Toubal, J.C. Cuillière, V. François, Fatigue life and residual strength of a short- natural-fiber-reinforced plastic vs nylon, Composites Part B: Eng., 110 (2017) 429-441.

DOI: 10.1016/j.compositesb.2016.11.036

Google Scholar

[32] M. De Monte, M. Quaresimin, P. Lazzarin, Modelling of fatigue strength data for a short fibre reinforced polyamide 6.6 based on local strain energy density, 16th Int. Conf. Composite Mater., Kyoto, Japan (2007).

Google Scholar

[33] R. Sakin, I. Ay, Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites, Mater. & Design, 29 (2008) 1170-1181.

DOI: 10.1016/j.matdes.2007.05.005

Google Scholar

[34] M.C. Sobieraj, J.E. Murphy, J.G. Brinkman, S.M. Kurtz, C.M. Rimnac, Notched fatigue behavior of PEEK, Biomaterials, 31(35) (2010) 9156–9162.

DOI: 10.1016/j.biomaterials.2010.08.032

Google Scholar

[35] S. Blachère, A. Gabelli, G.E. Morales-Espejel, Experimental conformity level for comparison between endurance tests and life calculation models, J. Bearing World, 6 (2021) 15-20.

Google Scholar

[36] Y. Kadin, C. Vieillard, J. Wensing, A. Theerthan, M. Becchetti, Finite Elements modelling of edge imperfections in ceramic rollers for assessing the risk of fatigue failure, J. Bearing World, 7 (2022) 44-50.

DOI: 10.1016/j.prostr.2024.03.026

Google Scholar

[37] A. Schönfeldt, Structural Analysis Routine for Construction Hoist Components - A Novel Method for Calculation and Testing of Mast Ties, Mechanical Engineering, master's level, Luleå University of Technology, Sweden, 2017.

Google Scholar

[38] M. Wismans,  Multiaxial Failure of Short-fiber Reinforced Thermoplastics. PhD thesis. Eindhoven University of Technology, The Netherlands, 2023.

Google Scholar