[1]
G. E. Morales-Espejel, A. Gabelli, The progression of surface rolling contact fatigue damage of rolling bearing, Evolution – SKF business & technology magazine (2015) https://evolution.skf.com/the-progression-of-surface-rolling-contact-fatigue-damage-of-rolling-bearings/
DOI: 10.1080/10402004.2014.983251
Google Scholar
[2]
A.V. Olver. The mechanism of rolling contact fatigue: an update, Proc. IMechE, 219, Part J, J. Eng. Tribol. (2005) 313–331.
Google Scholar
[3]
G.E. Morales-Espejel, A. Gabelli, The progression of surface rolling contact fatigue damage of rolling bearings with artificial dents, Tribol. Transactions, 58 (2015) 418–431.
DOI: 10.1080/10402004.2014.983251
Google Scholar
[4]
M.H. Nazir, Z.A. Khan, A. Saeed, Experimental analysis and modelling of C-crack propagation in silicon nitride ball bearing element under rolling contact fatigue, Tribol. Int., 126 (2018) 386-401.
DOI: 10.1016/j.triboint.2018.04.030
Google Scholar
[5]
Y. Kadin, C. Vieillard, J. Wensing, A. Theerthan, Finite Elements modelling and assessment of ceramic rollers with edge cracks, Proc. Struct. Integrity, 57 (2024) 236–249.
DOI: 10.1016/j.prostr.2024.03.026
Google Scholar
[6]
Q. Chen, S. Jiang, D. Duan, Fracture analysis and working stress calculation of bearing cage used in charging pump in a nuclear power plant, Metals, 13-1380 (2023) 1-14.
DOI: 10.3390/met13081380
Google Scholar
[7]
A.M. Alshoaibi, Y.A. Fageehi, A comparative analysis of 3D software for modeling fatigue crack growth: a review, Appl. Sci., 14-1848 (2024) 2-20.
DOI: 10.3390/app14051848
Google Scholar
[8]
C. Guster, G. Pinter, A. Mösenbacher, W. Eichlseder, Evaluation of a simulation process for fatigue life calculation of short fibre reinforced plastic components, Proc. Eng., 10 (2011) 2104–2109.
DOI: 10.1016/j.proeng.2011.04.348
Google Scholar
[9]
A. Vencl, V. Gašić, B. Stojanović, Fault tree analysis of most common rolling bearing tribological failures, IOP Conf. Ser.: Mater. Sci. Eng., 174-012048 (2017) 1-10.
DOI: 10.1088/1757-899x/174/1/012048
Google Scholar
[10]
N. Nosrati, A. Zabett, S. Sahebian, Stress dependency of creep response for glass/epoxy composite at nonlinear and linear viscoelastic behaviour, Int. J. Polymer Sci. (Hindawi), Article ID 9733138 (2022) 1-11.
DOI: 10.1155/2022/9733138
Google Scholar
[11]
L. Pastukhov, Long-term Performance of Fibre-reinforced Thermoplastics, PhD Thesis, TU Eindhoven, the Netherlands, 2019.
Google Scholar
[12]
Y. Kadin, R. Schaake, Modeling viscoelasticity and cyclic creep of PEEK by parallel rheological framework (PRF), European J. Mech. - A/Solids 104 (2023) 105216.
DOI: 10.1016/j.euromechsol.2023.105216
Google Scholar
[13]
T.B. Van Erp, C.T. Reynolds, T. Peijs, J.A.W., Van Dommelen, L.E. Govaert, Prediction of yield and long-term failure of oriented polypropylene: kinetics and anisotropy, J. Polymer Sci.: Part B: Polymer Phys., 47 (2009) 2026-2035.
DOI: 10.1002/polb.21801
Google Scholar
[14]
E. Parodi, Structure Properties Relations for Polyamide 6, PhD Thesis, TU Eindhoven, the Netherlands, 2017.
Google Scholar
[15]
ABAQUS/Standard User's Manual.
Google Scholar
[16]
P.H. Foss, H.C. Tseng, J. Snawerdt, Y.J. Chang, W.H. Yang, C.H. Hsu, Prediction of fiber orientation distribution in injection molded parts using Moldex3D simulation, Polymer Composites, 35 (2014) 671–680.
DOI: 10.1002/pc.22710
Google Scholar
[17]
S.G. Advani, C.L. Tucker, The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheology, 31 (1987) 751-784.
DOI: 10.1122/1.549945
Google Scholar
[18]
A. Amiri-Rad, L.V. Pastukhov, L.E. Govaert, J.A.W. Van Dommelen, An anisotropic viscoelastic-viscoplastic model for short-fiber composites, Mech. Mater., 137 (2019) 103141.
DOI: 10.1016/j.mechmat.2019.103141
Google Scholar
[19]
R.B. Colby, Equivalent Plastic Strain for the Hill's Yield Criterion under General Three-dimensional Loading, BSc Thesis, Massachusetts Institute of Technology (MIT), MA, USA, 2013.
Google Scholar
[20]
S.W. Tsai, E. M. Wu, A general theory of strength for anisotropic materials, J. Composite Mater., 5 (1971) 58-80.
Google Scholar
[21]
P.V. Osswald, T.A. Osswald, A strength tensor based failure criterion with stress interactions, Polymer Composites, 39 (2018) 2826–2834.
DOI: 10.1002/pc.24275
Google Scholar
[22]
J.A. Williams, The influence of repeated loading, residual stresses and shakedown on the behaviour of tribological contacts, Tribol. Int., 38 (2005) 786–797.
DOI: 10.1016/j.triboint.2005.02.006
Google Scholar
[23]
M. Abdel-Karim, Shakedown of complex structures according to various hardening rules. Int. J. Pressure Vessels and Piping 82 (2005) 427-458.
DOI: 10.1016/j.ijpvp.2005.01.007
Google Scholar
[24]
J. Hodowany, G. Ravichandran, A.J. Rosakis, P. Rosakis, Partition of plastic work into heat and stored energy in metals, Experimental Mech., 40 (2000) 113–123.
DOI: 10.1007/bf02325036
Google Scholar
[25]
D.L. McDowell, F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue crack formation, Int. J. Fatigue, 32 (2010) 1521-1542.
DOI: 10.1016/j.ijfatigue.2010.01.003
Google Scholar
[26]
A. Launay, M.H. Maitournam, Y. Marco, I. Raoult, Multiaxial fatigue models for short glass fibre reinforced polyamide. Part II: fatigue life estimation, Int. J. Fatigue, 47 (2013) 390-406.
DOI: 10.1016/j.ijfatigue.2012.09.015
Google Scholar
[27]
S. Mortazavian, A. Fatemi, Fatigue behavior and modeling of short fiber reinforced polymer composites: A literature review, Int. J. Fatigue, 70 (2015) 297-321.
DOI: 10.1016/j.ijfatigue.2014.10.005
Google Scholar
[28]
H. Stadler, Effect of frequency, R-ratio and test specimen configuration on fatigue crack growth in PE pipe materials, Diploma Thesis, Institute for Materials Science and Testing of Plastics of the University of Leoben and Polymer Competence Center Leoben GmbH, Austria, 2006.
DOI: 10.24132/csrn.3301.92
Google Scholar
[29]
K. S. Saib, W. J. Evans, D. H. Isaac, The fatigue crack propagation behaviour of short carbon fibre reinforced PEEK composites, Fracture of Eng. Mater. Structures, Proceedings of the Joint FEFG/ICF Int. Conf. (1991) 215-220.
DOI: 10.1007/978-94-011-3650-1_30
Google Scholar
[30]
H. Liu, A. Ojha, Z. Li, C.C. Engler-Pinto Jr., X. Su, Q. Sun, H. Kang, W. Wen, H. Cui, Fatigue modeling for carbon/epoxy unidirectional composites under various stress ratios considering size effects, Int. J. Fatigue, 120 (2019) 184-200.
DOI: 10.1016/j.ijfatigue.2018.11.009
Google Scholar
[31]
M. Mejri, L. Toubal, J.C. Cuillière, V. François, Fatigue life and residual strength of a short- natural-fiber-reinforced plastic vs nylon, Composites Part B: Eng., 110 (2017) 429-441.
DOI: 10.1016/j.compositesb.2016.11.036
Google Scholar
[32]
M. De Monte, M. Quaresimin, P. Lazzarin, Modelling of fatigue strength data for a short fibre reinforced polyamide 6.6 based on local strain energy density, 16th Int. Conf. Composite Mater., Kyoto, Japan (2007).
Google Scholar
[33]
R. Sakin, I. Ay, Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites, Mater. & Design, 29 (2008) 1170-1181.
DOI: 10.1016/j.matdes.2007.05.005
Google Scholar
[34]
M.C. Sobieraj, J.E. Murphy, J.G. Brinkman, S.M. Kurtz, C.M. Rimnac, Notched fatigue behavior of PEEK, Biomaterials, 31(35) (2010) 9156–9162.
DOI: 10.1016/j.biomaterials.2010.08.032
Google Scholar
[35]
S. Blachère, A. Gabelli, G.E. Morales-Espejel, Experimental conformity level for comparison between endurance tests and life calculation models, J. Bearing World, 6 (2021) 15-20.
Google Scholar
[36]
Y. Kadin, C. Vieillard, J. Wensing, A. Theerthan, M. Becchetti, Finite Elements modelling of edge imperfections in ceramic rollers for assessing the risk of fatigue failure, J. Bearing World, 7 (2022) 44-50.
DOI: 10.1016/j.prostr.2024.03.026
Google Scholar
[37]
A. Schönfeldt, Structural Analysis Routine for Construction Hoist Components - A Novel Method for Calculation and Testing of Mast Ties, Mechanical Engineering, master's level, Luleå University of Technology, Sweden, 2017.
Google Scholar
[38]
M. Wismans, Multiaxial Failure of Short-fiber Reinforced Thermoplastics. PhD thesis. Eindhoven University of Technology, The Netherlands, 2023.
Google Scholar