Sleeve Slippage Simulation and Slippage Damage Identification for the Development of Next Generation Sleeve Assembly Roll

Article Preview

Abstract:

Next generation rolls such as super-cermet rolls and all-ceramic rolls can be manufactured using only sleeve assembly type rolls, which have the advantage of being able to reuse the shaft by replacing the damaged sleeves. However, in some cases, failures with unknown causes may occur such as circumferential slippage, shaft pull-out or residual bending deformation at the shrink-fit interface. Such slipping failures cannot be prevented by conventional design concept. This is because even if the resistant torque is greater than the motor torque, the circumferential slippage will occur. Through numerical simulation and miniature roll experiment, the following results are obtained. 1) Even under free rolling condition without motor torque, the circumferential slippage occurs. 2) The slippage is caused by the accumulation of irreversible slip during the roll rotation. 3) The motor torque accelerates the sip amount significantly. 4) The geometry of slippage defect can be identified experimentally. 5) The fatigue strength of sleeve assembly rolling rolls can be evaluated by using √area parameter characterizing the identified slip defects. 6) By preventing the slip damage, the fatigue strength of sleeve rolls can be nearly equal to that of conventional solid rolls without shrink-fit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-102

Citation:

Online since:

January 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Shimoda, S. Onodera, K. Hori, Study on the residual deflection of large sleeved back-up rolls: 4th Report, Residual stresses of sleeved rolls. Trans. Jpn. Soc. Mech. Eng. 32 (1966) 689-694.

DOI: 10.1299/kikai1938.32.689

Google Scholar

[2] T. Irie, K. Takaki, I. Tsutsunaga, Y. Sano, Steel strip and section steel and thick rolling, processing. Tetsu-to-Hagane 65 (1979) 293.

Google Scholar

[3] H. Takigawa, K. Hashimoto, G. Konno, S. Uchida, Development of forged high-speed-steel roll for shaped steel. CAMP-ISIJ 16 (2003) 1150-1153.

Google Scholar

[4] Y. Sano, Recent advances in rolling rolls. Proc of the No. 148-149 Nishiyama Memorial Technology Course, Tokyo, Japan (1993) 193-226.

Google Scholar

[5] Y. Sano, Fatigue failure problem in the inside of roll body for hot strip rolling- Crack initiation problem and its estimation in the actual plant. The 245th JSMS Committee on Fatigue of Materials and the 36th JSMS Committee on Strength Design, Safety Evaluation (1999), 40.

Google Scholar

[6] E. Matsunaga, T. Tsuyuki, Y. Sano, Optimum shrink fitting ratio of sleeve roll (Strength design of shrink fitted sleeve roll for hot strip mill-1). CAMP-ISIJ, 11 (1998) 362. https://ci.nii.ac.jp/naid/10002551803.

Google Scholar

[7] S. Tutumi, S. Hara, S. Yoshi, The residual deflection of sleeved backup-up rolls. Tetsu-to-Hagane 57(5) (1971) 818-822.

DOI: 10.2355/tetsutohagane1955.57.5_818

Google Scholar

[8] S. Spuzic, K.N. Strafford, C. Subramanian, G. Savage, Wear of hot rolling mill rolls: an overview. Wear 176(2) (1994) 261-271.

DOI: 10.1016/0043-1648(94)90155-4

Google Scholar

[9] T. Hattori, Y. Kamitani, K. Sugino, H. Tomita, Y. Sano, Super cermet rolls for manufacturing ultra-fine-grained steel, International Conference on Tribology in Manufacturing Processes ICTMP 2007 International Conference 24-26, Yokohama, September 2007.

Google Scholar

[10] S. Hamayoshi, E. Ogawa, K. Shimiz, N.-A. Noda, Kishi K, S. Koga, Development of large ceramic rolls for continuous hot-dip galvanized steel sheet production lines. Sokeizai 51-12 (2010) 54-59.

Google Scholar

[11] N.-A. Noda, D. Suryadi, S. Kumasaki, Y. Sano and Y. Takase, Failure analysis for coming out of shaft from shrink-fitted ceramics sleeve, Engineering Failure Analysis, 57 (2015) 219-235.

DOI: 10.1016/j.engfailanal.2015.07.016

Google Scholar

[12] G. Zhang, N.-A. Noda, Y. Sano and Y. Takase, Identification of driving out force of shaft towards preventing coming out failure of shaft in shrink-fitted ceramic sleeve roll, Engineering Failure Analysis, 135 (2022) 106155.

DOI: 10.1016/j.engfailanal.2022.106155

Google Scholar

[13] N.-A. Noda, H. Sakai, Y. Sano, Y. Takase, Y. Shimoda, Quasi-equilibrium stress zone with residual displacement causing permanent slippage in shrink-fitted sleeve rolls. Metals 8 (2018) 998.

DOI: 10.3390/met8120998

Google Scholar

[14] H. Sakai, N.-A. Noda, Y. Sano, G. Zhang, Y. Takase, Effect of driving torque on the interfacial creep for shrink-fitted bimetallic work roll. Tetsu-to-Hagane 105-12 (2019) 28-36.

DOI: 10.2355/tetsutohagane.TETSU-2019-048

Google Scholar

[15] N.-A. Noda, R.A. Rafar, H. Sakai H, X. Zheng, H. Tsurumaru, Y. Sano, Y. Takase, Irreversible interfacial slip in shrink-fitted bimetallic work roll promoted by roll deformation. Eng Fail Anal 126 (2021) 105465

DOI: 10.1016/j.engfailanal.2021.105465

Google Scholar

[16] N. Soda, Bearing. Iwanami Shoten, Tokyo (1964) 196-203.

Google Scholar

[17] Imai: Lubrication, 4 (1959) 307.

Google Scholar

[18] J. Murata, T. Onizuka, Generation mechanism of inner ring creep. Koyo Eng. J. 166(2005)41-47.

Google Scholar

[19] T. Niwa, A creep mechanism of rolling bearings. NTN Tech. Rev. 81 (2013) 100-103.

Google Scholar

[20] Ten, Sakajiri, Takemura, Yukawa: NSK Tech. J. 680 (2006) 13.

Google Scholar

[21] New Bearing Doctor: Diagnosis of bearing problems. Objective: Smooth & reliable operation. NSK (1997). https://www.nsk.com/common/data/ctrgPdf/e7005c.pdf.

Google Scholar

[22] J. Zhan, H. Takemura, K. Yukawa, A study on bearing creep mechanism with FEM simulation. Proceedings of IMECE2007, 2007 Seattle, Washington, USA.

DOI: 10.1115/IMECE2007-41366

Google Scholar

[23] J. Zhan, K. Yukawa, H. Takemura, Analysis of bearing outer ring creep with FEM. Advanced Tribology, 2009, Springer, Berlin, Heidelberg.

DOI: 10.1007/978-3-642-03653-8_74

Google Scholar

[24] S. Noguchi, K. Ichikawa, A study about creep between inner ring of ball bearing and shaft. Proceeding of Academic Lectures of the Japan Society for Precision Engineering, 2010, Japan.

Google Scholar

[25] T. Teramoto, Y. Sato, Prediction method of outer ring creep phenomenon of ball bearing under bearing load. Trans. Of Society of Automotive Eng. of Japan, 46 (2015) 355-360.

Google Scholar

[26] C. Bovet, L. Zamponi, An approach for predicting the internal behaviour of ball bearings under high moment load. Mech. Mach. Theory 101 (2016) 1-22.

DOI: 10.1016/j.mechmachtheory.2016.03.002

Google Scholar

[27] A. Maiwald, E. Leidich, FE simulations of irreversible relative movements (creeping) in rolling bearing seats –Influential parameters and remedies. World Congress on Engineering and Computer Science 2013 Vol II, San Francisco, USA. http://www.iaeng.org/publication/ WCECS2013/WCECS2013_pp1030-1035.pdf.

DOI: 10.1007/978-94-017-9115-1_41

Google Scholar

[28] T. Schiemann, S. Porsch, E. Leidich, B. Sauer, Intermediate layer as measure against rolling bearing creep. Wind Energy 21 (2018) 426-440.

DOI: 10.1002/we.2170

Google Scholar

[29] R.A. Rafar, N.-A. Noda, H. Tsurumaru, Y. Sano Y, Y. Takase, Novel design concept for shrink-fitted bimetallic sleeve roll in hot rolling mill. Int J Adv Manuf Technol 120 (2022) 3167-3180.

DOI: 10.1007/s00170-022-08954-2

Google Scholar

[30] N.-A. Noda, R.A. Rafar, Y. Taruya, X. Zheng, H. Tsurumaru, Y. Sano, Y. Takase, K. Nakagawa, K. Kondo, Interfacial slip verification and slip defect identification in shrink-fitted bimetallic sleeve roll used in hot rolling mill, Tribology International, 175 (2022) 107793

DOI: 10.1016/j.triboint.2022.107793

Google Scholar

[31] N.-A. Noda, R.A. Rafar, X. Zheng, H. Tsurumaru, Y. Taruya, Y. Sano, Y. Takase,  Fatigue strength analysis of bimetallic sleeve roll by simulation of local slip accumulation at shrink-fit interface caused by roll rotation, Int J Adv Manuf Technol, 125 (2023) 369–385

DOI: 10.1007/s00170-022-10669-3

Google Scholar

[32] Y. Murakami, Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier Science, Oxford UK, 2002.

Google Scholar

[33] T. Ikeda T, N.-A. Noda, Y. Sano, Conditions for notch strength to be higher than static tensile strength in high-strength ductile cast iron. Eng Fract Mech 206 (2019)75-88.

DOI: 10.1016/j.engfracmech.2018.11.034

Google Scholar

[34] N.-A. Noda, K. Hu, Y. Sano, K. Ono, Y. Hosokawa, Residual stress simulation for hot strip bimetallic roll during quenching Steel Research International, 87-11 (2016) 1478-1488.

DOI: 10.1002/srin.201500430

Google Scholar

[35] N.-A. Noda, K. Hu, Yoshikazu Sano and Yusuke Hosokawa, Usefulness of Non-Uniform Heating and Quenching Method for Residual Stress of Bimetallic Roll: FEM Simulation Considering Creep Behavior, Steel Research International, 88-3 (2017) 1600165.

DOI: 10.1002/srin.201600165

Google Scholar

[36] N.-A. Noda, Y. Sano, M. R. Aridi, K. Tsuboi, N. Oda, Residual stress differences between uniform and non-uniform heating treatment of bimetallic roll: Effect of creep behavior on residual stress. Metals 8 (2018) 952.

DOI: 10.3390/met8110952

Google Scholar

[37] N.-A. Noda, M. R. Aridi, R. Torigoe, K. Tsuboi, Y. Sano, Reduction of Residual Stress in Bimetallic Work Roll by Tempering, Journal of Japan Society for Technology of Plasticity, 61 (2020) 183-189.

DOI: 10.9773/sosei.61.183

Google Scholar

[38] N.-A. Noda, M. R. Aridi, Y. Sano, Tempering effect on residual stress in bimetallic roll, 35 (2021) 2140044.

DOI: 10.1142/s0217979221400440

Google Scholar

[39] M. R. Aridi, N.-A. Noda, Y. Sano, K. Takata, Z. Sun, Y. Takase, Fatigue failure risk evaluation of bimetallic rolls in four‐high hot rolling mills, Fatigue and Fracture of Engineering Materials and Structures, 45 (2022) 1065-1087.

DOI: 10.1111/ffe.13651

Google Scholar

[40] M.R. Aridi, N.-A. Noda, Y. Sano, K. Takata and Z. Sun, Fatigue failure analysis for bimetallic work roll in hot strip mills Steel Research International, 93 (2022) 2100313.

DOI: 10.1002/srin.202100313

Google Scholar

[41] M. R. Aridi, R.A. Rafar, N.-A. Noda, Z. Sun, Y. Sano, K. Takata and Y. Takase, Residual stress simulation for bimetallic sleeve roll constructed by shrink-fitting in comparison with bimetallic solid roll, Journal of Manufacturing Processes, 107 (2023) 252-267.

DOI: 10.1016/j.jmapro.2023.09.068

Google Scholar