Mechanical and Thermal Property of Carbon Fiber Reinforced Composites

Article Preview

Abstract:

Thermal property of carbon fiber-reinforced polymer composites (CRFPs) fabricated through vacuum assisted resin transfer molding method (VARTM) is investigated using Thermo Gravimetric Analysis/Differential Scanning Calorimetry tool. These analysis on laminate composites with three different orientations are carried out at room temperature up to 800°C. Also, mechanical and water absorption behavior of polymeric composites are determined. Among the orientation effect, a longitudinal direction sample including 39 vol. % carbon fiber in epoxy resin indicated that the mass loss in percentage was lower while decomposition temperature was higher than those of others due to higher mechanical strength. These composites revealed the most thermally stable among the others. Further, lower amounts of water absorption rates were obtained at 0o-orientation, followed by 0/90o-orientation composites, but no significant variations occurred with these orientations while some variations occurred for 30o-orientation with increasing the soaking times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-54

Citation:

Online since:

January 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Sauer, M. Kühnel," The global CF- and CC-Market 2017," Composites Market Report 2017, Carbon Composites 2017, Germany. https://www.eucia.eu.

Google Scholar

[2] P. K. Mallick, "Fibre Reinforced Composites: Materials, Manufacturing and Design", Third Ed., Boca Raton, Florida, CRC Press, 2007.

DOI: 10.1201/9781420005981

Google Scholar

[3] S. K. Mazumdar, "Composite Manufacturing: Materials, Product and Process Engineering", First Ed. Boca Raton, Florida, CRC Press, 2011.

DOI: 10.1201/9781420041989

Google Scholar

[4] J. D. Menczel, R. B. Prime, eds. "Thermal analysis of polymers: fundamentals and applications," Wiley, Hoboken, NJ, 688, 2008. https://.

DOI: 10.1002/9780470423837

Google Scholar

[5] K. Md. M. Billah, F. A. R, Lorenzana, N. L. Martinez, S. Chacon, R. B. Wicker, D. Espalin, "Thermal analysis of thermoplastic materials filled with chopped fiber for large area 3D printing," Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 2019, pp.892-8978.

Google Scholar

[6] F. Ning, W. Cong, J. Qiu, J. Wri, S. Wang, "Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modelling," Composites Part B: Engineering, 80 (1) (2015) 369-378.

DOI: 10.1016/j.compositesb.2015.06.013

Google Scholar

[7] S. Dul, L. Fambri, A. Pegoretti, "Fused deposition modelling with ABS graphene Nano composites," Composites Part A: Applied Science and Manufacturing, 85 (1) (2016) 181-191.

DOI: 10.1016/j.compositesa.2016.03.013

Google Scholar

[8] H. L. Tekinalp, V. Kunc, G. M. Velez-Garcia, C. E. Duty, L.J. Love, A. K. Naskar, C.A. Blue, S. Ozcan, "Highly oriented carbon fiber-polymer composites via additive manufacturing," Composites Science and Technology, 105 (2014) 144-150.

DOI: 10.1016/j.compscitech.2014.10.009

Google Scholar

[9] L. J. Love, V. Kunc, O. Rio, C. E. Duty, A. M. Elliot, B. K. Post, R. J. Smith, C. A. Blue, " The importance of carbon fiber to polymer additive manufacturing," Journal of Materials Research, 29 (17) (2014) 1893–1898.

DOI: 10.1557/jmr.2014.212

Google Scholar

[10] B. Bommara, Dr. M. Devaiah, P. L. Reddy, M. R. Gandhi, " Thermal characterization of fiber reinforced polymer composites and hybrid composites," International Journal of Mechanical Engineering and Technology (IJMET), 10 (3) (2019) 1055–1066.

Google Scholar

[11] S. K. Kim, J. T. Kim, H. C. Kim, K. Y. Rhee, J. Kathi," Thermal and mechanical properties of epoxy/carbon fiber composites reinforced with multi-walled carbon nanotubes," Journal of Macromolecular Science, Part B: Physics, 51 (2012) 358–367. https://doi.org/.

DOI: 10.1080/00222348.2011.596799

Google Scholar

[12] L. Y. Lin, et al., "Preparation and characterization of layered silicate/glass fiber/epoxy hybrid Nano composites via vacuum-assisted resin transfer molding (VARTM)," Composites Science and Technology, 66 (13) (2006) 2116-2125.

DOI: 10.1016/j.compscitech.2005.12.025

Google Scholar

[13] F. Rezaei, R. Yunus., N.A. Ibrahim,"Effect of fiber length on thermo mechanical properties of short carbon fiber reinforced polypropylene composites," Materials, Design, 30 (2) (2009) 260-263.

DOI: 10.1016/j.matdes.2008.05.005

Google Scholar

[14] F. Rezaei, et al., "Effect of fiber loading and fiber length on mechanical and thermal properties of short carbon fiber reinforced polypropylene composite," The Malaysian Journal of Analytical Science 11 (1) (2007) 181-188.

Google Scholar

[15] J. Tan, T. Kitano, T. Hatakeyama, "Crystallization of carbon fiber reinforced polypropylene," Journal of Materials Science, 25 (7) (1990) 3380-3384.

DOI: 10.1007/bf00587701

Google Scholar

[16] S. Alam, M. A. Chowdhury, "Thermal gravimetric analysis of glass fiber reinforced composite for understanding the impact of copper oxide in relation to titanium oxide filler particles" Polish Society of Composite Materials, 21 (1-2) (2021) 12-21.

Google Scholar

[17] K. Karvanis, So na Rusnákován, O. J. Krejˇcí, M. Žaludek, "Preparation, thermal analysis, and mechanical properties of basalt fiber/epoxy composites," Polymers, 12 (2020) 1785-1790.

DOI: 10.3390/polym12081785

Google Scholar

[18] R. Ambigai, S. Prabhu, "Analysis on mechanical and thermal properties of glass carbon/epoxy based hybrid composites," IOP Conf. Series: Materials Science and Engineering, 402 (2018) 012136.

DOI: 10.1088/1757-899X/402/1/012136

Google Scholar

[19] N. M. Yatim, Z. Shamsudin, A. Shaaban, N. A. Sani, R. Jumaidin, E. A. Shariff, "Thermal analysis of carbon fibre reinforced polymer decomposition," Materials Research Express, 7 (2020) 015615.

DOI: 10.1088/2053-1591/ab688f

Google Scholar

[20] M.V. Burkov, A.V. Eremin, "Thermogravimetric analysis of epoxy-based carbon fiber reinforced polymers modified by carbon fillers," IOP Conf. Series: Materials Science and Engineering, 1118 (2021) 012035. https:// doi.org/.

DOI: 10.1088/1757-899X/1118/1/012035

Google Scholar

[21] E.E. Kiziltas, H.S. Yang, A. Kiziltas, S. B. Torun, "Thermal analysis of polyamide 6 composites filled by natural fiber blend," Bioresources, 11 (2) (2016) 4758-4769.

DOI: 10.15376/biores.11.2.4758-4769

Google Scholar

[22] M.N.M. Azlin, S.M. Sapuan, M. Y. Zuhri, E. S. Zainudin, R. A. Ilyas, "Thermal stability, dynamic mechanical analysis and flammability properties of woven kenaf/polyester-reinforced polylactic acid hybrid laminated composites," Polymers, 14 (2022) 2690-2696.

DOI: 10.3390/polym14132690

Google Scholar

[23] H.A. Aisyah, M.T. Paridah, S.M. Sapuan, A. Khalina, O. B. Berkalp, S. H. Lee, H. Lee, N. M. Nurazzi, N. Ramli, M. S. Wahab, R. A. Ilyas, "Thermal properties of woven kenaf/carbon fibre-reinforced epoxy hybrid composite panels," Hindawi International Journal of Polymer Science, 11 (2019) 5258621.

DOI: 10.1155/2019/5258621

Google Scholar

[24] 24.Z. N. Azwa, B. F. Yousif, "Thermal degradation study of kenaf fibre/epoxy composites using thermo gravimetric analysis," M.M. Noor, M.M. Rahman and J. Wasmail (eds.), 3 rd Malaysian Postgraduate Conference (MPC2013-16), (2013), Sydney, New South Wales, pp.256-264.

Google Scholar

[25] T. Gomes, L. Visconte, E. B. A.V. Pacheco, "Mechanical and thermal behavior of composites based on high density polyethylene and banana tree fiber," Polymers, 23 (2) (2013) 206-211.

Google Scholar

[26] M. Asim, M. Jawaid, M. Nasir, N. Saba, "Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites," Journal of Renewable Materials, 6 (4) (2018) 383-393. https://doi.org/.

DOI: 10.7569/JRM.2017.634162

Google Scholar

[27] W. Wang, M. Sain, P. A. Cooper, "Hygrothermal weathering of rice hull/HDPE composites under extreme climatic conditions," Polymer Degradation and Stability, 90 (2005) 540-545.

DOI: 10.1016/j.polymdegradstab.2005.03.014

Google Scholar

[28] F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu, "Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis," Polymer Degradation and Stability, 93 (1) (2008) 90-98.

DOI: 10.1016/j.polymdegradstab.2007.10.012

Google Scholar

[29] Y. Şahin, "Manufacturing of Glass, Carbon & Hybrid epoxy composite using Vacuum Assisted Resin Transfer Method (VARTIM) and investigating the improvement of mechanical properties," Nişantaşi University (NISHBAP), Scientific Research Report (BAP 2020/10), October 2022, İstanbul.

Google Scholar

[30] L. O. Meyer, K. Schulte, E. Grove-Nielsen, "CFRP-recycling following a pyrolysis route: Process optimization and potentials," Journal of Composite Materials, 43 (9) (2009) 1121-1132. https://doi.org/.

DOI: 10.1177/0021998308097737

Google Scholar

[31] G. Agarwal, A. Patnaik, R. Sharma, "Mechanical and thermo–mechanical properties of bi-directional and short carbon fiber reinforced epoxy composites," Journal of Engineering Science and Technology, 9 (5) (2014) 590-604.

Google Scholar

[32] A. K. Pathak, H. Garg, K. M. Subhedar, S. R. Dhakate, "Significance of carbon fiber orientation on thermomechanical properties of carbon fiber reinforced epoxy composite," Fibers and Polymers 22 (7) (2021) 1923-1933.

DOI: 10.1007/s12221-021-0703-9

Google Scholar

[33] L. Harper, T. Turner, J. Martin, N. Warrior, "Fiber alignment in directed carbon fiber preforms – A feasibility study," Journal of Composite Materials, 43 (1) (2009) 57-74.

DOI: 10.1177/0021998308098151

Google Scholar

[34] H. Rahmani, S. Najafi, S. Saffarzadeh-Matin, A. Ashori, "Mechanical properties of carbon fiber/epoxy composites: Effects of number of plies, fiber contents, and angle-ply layers," Polymer Engineering Science, 54 (2014) 2676-2685.

DOI: 10.1002/pen.23820

Google Scholar

[35] N. Kumar, A. Singh, "Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites," Materials Today: Proceedings, 39 (2021) 1581–1587.

DOI: 10.1016/j.matpr.2020.05.707

Google Scholar

[36] S. Biswas, B. Deo, A. Patnaik, A. Satapathy, "Effect of fiber loading and orientation on mechanical and erosion wear behaviors of glass-epoxy composites," Polymer Composites, 32 (4) (2011) 665–674. https:// doi.org/

DOI: 10.1002/pc.21082

Google Scholar

[37] H.W. Wang, H.W. Zhou, L.L. Gui, H.W. Ji, X. C. Zhang,"Analysis of effect of fiber orientation on young's modulus for unidirectional fiber reinforced composites," Composites Part B, 56 (2014) 733–739.

DOI: 10.1016/j.compositesb.2013.09.020

Google Scholar

[38] ASTM D570-98 (Reapproved 2018). Standard test for water absorption of plastics, ASTM International, West Conshohocken, PA: ASTM International, 2018.

Google Scholar

[39] Md. A.S. Sujona, M.A. Habib, M.Z. Abedin, "Experimental investigation of the mechanical and water absorption properties on fiber stacking sequence and orientation of jute/carbon epoxy hybrid composites," Journal of Materials Research and Technology, 9 (5) (2020) 510970-1098.

DOI: 10.1016/j.jmrt.2020.07.079

Google Scholar

[40] A. B. Maslinda, M.S. Abdul Majid, M. J. M. Ridzuan, M. Afendi, A. G. Gibson, "Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites," Composite Structures, 167 (2017) 227–37.

DOI: 10.1016/j.compstruct.2017.02.023

Google Scholar

[41] S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D. J. Johnson, M. Shanmugam, A. Ayyanar, K. Nweresh, R. E. Newasiany, O. Das, "Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites," Scientific Reports, 11 (2021) 13385-13389.

DOI: 10.1038/s41598-021-92457-9

Google Scholar

[42] P.S. Rao, Dr. M. M. Hussain, R. Kwashore, "Moisture absorption evolution of GFRP laminates subjected to different environmental conditions," IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE), 2 (5) (2012) 33-38. https://www.iosrjournals.org.

DOI: 10.9790/1684-0253338

Google Scholar