[1]
A. Drissi Elbouzidi, A. Ait El Cadi, R. Pellerin, S. Lamouri, E. Tobon Valencia, and M. J. Bélanger, "The Role of AI in Warehouse Digital Twins: Literature Review †," Appl. Sci., vol. 13, no. 11, 2023.
DOI: 10.3390/app13116746
Google Scholar
[2]
M. Glatt, C. Sinnwell, L. Yi, S. Donohoe, B. Ravani, and J. C. Aurich, "Modeling and implementation of a digital twin of material flows based on physics simulation," J. Manuf. Syst., vol. 58, no. October 2019, p.231–245, 2021.
DOI: 10.1016/j.jmsy.2020.04.015
Google Scholar
[3]
U. Venkatadri and A. Murrenhoff, "Towards a Framework for AI Applications in Intralogistics," IFAC-PapersOnLine, vol. 58, no. 19, p.37–42, 2024.
DOI: 10.1016/j.ifacol.2024.09.084
Google Scholar
[4]
C. Weckenborg, P. Schumacher, C. Thies, and T. S. Spengler, "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," Eur. J. Oper. Res., vol. 315, no. 2, p.413–441, 2024.
DOI: 10.1016/j.ejor.2023.08.050
Google Scholar
[5]
C. Aron, F. Sgarbossa, E. Ballot, and D. Ivanov, "Cloud material handling systems: a cyber-physical system to enable dynamic resource allocation and digital Interoperability," J. Intell. Manuf., p.3815–3836, 2023.
DOI: 10.1007/s10845-023-02262-6
Google Scholar
[6]
M. Al Bashar, D. Ashrafi, and A. Taher, "Enhancing Efficiency of Material Handling Equipment in Industrial Engineering Sectors," Iconic Res. Eng. Journals, vol. 7, no. 11, p.595–604, 2024.
Google Scholar
[7]
O. Κ. Efthymiou and S. T. Ponis, "Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics," World Acad. Sci. Eng. Technol. Open Sci. Index 154, Int. J. Ind. Manuf. Eng., vol. 13, no. 10, p.1370–1374, 2019.
Google Scholar
[8]
K. Ellithy, M. Salah, I. S. Fahim, and R. Shalaby, "AGV and Industry 4.0 in warehouses: a comprehensive analysis of existing literature and an innovative framework for flexible automation," Int. J. Adv. Manuf. Technol., vol. 134, no. 1–2, p.15–38, 2024.
DOI: 10.1007/s00170-024-14127-0
Google Scholar
[9]
E. O. Sodiya, U. J. Umoga, O. O. Amoo, and A. Atadoga, "AI-driven warehouse automation: A comprehensive review of systems," GSC Adv. Res. Rev., vol. 18, no. 2, p.272–282, 2024.
DOI: 10.30574/gscarr.2024.18.2.0063
Google Scholar
[10]
M. Woschank, E. Rauch, and H. Zsifkovits, "A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics," Sustain., vol. 12, no. 9, 2020.
DOI: 10.3390/su12093760
Google Scholar
[11]
Y. Zhang, Z. Guo, J. Lv, and Y. Liu, "A Framework for Smart Production-Logistics Systems Based on CPS and Industrial IoT," IEEE Trans. Ind. Informatics, vol. 14, no. 9, p.4019–4032, 2018.
DOI: 10.1109/TII.2018.2845683
Google Scholar
[12]
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The Graph Neural Network Model," IEEE Trans. Neural Networks, vol. 20, no. 1, p.61–80, 2009.
DOI: 10.1109/TNN.2008.2005605
Google Scholar
[13]
Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, "Gated graph sequence neural networks," 4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., no. 1, p.1–20, 2016.
Google Scholar
[14]
J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, "Neural message passing for quantum chemistry," 34th Int. Conf. Mach. Learn. ICML 2017, vol. 3, p.2053–2070, 2017.
Google Scholar
[15]
Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, "Graph matching networks for learning the similarity of graph structured objects," 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, p.6815–6832, 2019.
Google Scholar
[16]
W.-H. Tsai and K.-S. Fu, "Error-Correcting Isomorphisms of Attributed Relational Graphs for Pattern Analysis," IEEE Trans. Syst. Man. Cybern., vol. 9, no. 12, p.757–768, 1979.
DOI: 10.1109/TSMC.1979.4310127
Google Scholar
[17]
M. Zaslavskiy, "Graph matching and its application in computer vision and bioinformatics," Theses, École Natl. Supérieure des Mines Paris, 2010.
Google Scholar
[18]
F. Heimerl, S. Lohmann, S. Lange, and T. Ertl, "Word cloud explorer: Text analytics based on word clouds," Proc. Annu. Hawaii Int. Conf. Syst. Sci., p.1833–1842, 2014.
DOI: 10.1109/HICSS.2014.231
Google Scholar