[1]
Sass J., Organizational emotions and organizational trust, course material, University of Budapest Corvinus, Budapest, Hungary. (2011)
Google Scholar
[2]
Kamarási V., Mogyorósy G., Methodology and significance of systematic literature reviews. To aid diagnostic and therapeutic decisions, Medical Weekly Magazine, 2015, 156(38), pp.1523-1531.
Google Scholar
[3]
Xiao, Y. and Watson, M., Guidance on Conducting a Systematic Literature Review, Journal of Planning Education and Research, 2019, 39(1), pp.93-112.
Google Scholar
[4]
Juhász J., Development Just-in-sequence supply chain design methods, Ph.D. dissertation, University of Miskolc, pp.11-15. (2023)
Google Scholar
[5]
de Gennaro M., Paffumi E., Scholz H., Martini G., Analysis and assessment of the electrification of Urban road transport based on real-life mobility data, World Electric Vehicle Journal, 2013, 6 (1), pp.100-111.
DOI: 10.3390/wevj6010100
Google Scholar
[6]
Coban H.H., Lewicki W., Sendek-Matysiak E., Łosiewicz Z., Drożdż W., Miśkiewicz R., Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System, Energies, 15 (21), 2022, art. no. 8218.
DOI: 10.3390/en15218218
Google Scholar
[7]
Stańczyk T.L., Hyb L., Technological and organisational challenges for e-mobility, Archives of Automotive Engineering, 2019, 84 (2), pp.57-70.
DOI: 10.14669/am.vol84.art5
Google Scholar
[8]
Kryzia D., Kryzia K., An evaluation of the potential of the conversion of passenger cars powered by conventional fuels into electric vehicles [Ocena potencjału konwersji samochodów osobowych zasilanych paliwami konwencjonalnymi na pojazdy elektryczne], Polityka Energetyczna, 2023, 26 (3), pp.171-186.
DOI: 10.33223/epj/171324
Google Scholar
[9]
Hoarau Q., Perez Y., Network tariff design with prosumers and electromobility: Who wins, who loses?, Energy Economics, 2019, 83, pp.26-39.
DOI: 10.1016/j.eneco.2019.05.009
Google Scholar
[10]
Geisbauer C., Wöhrl K., Koch D., Wilhelm G., Schneider G., Schweiger H.-G., Comparative study on the calendar aging behavior of six different lithium‐ion cell chemistries in terms of parameter variation, Energies, 2021, 14 (11), art. no. 3358.
DOI: 10.3390/en14113358
Google Scholar
[11]
Pinto-Bautista S., Baumann M., Weil M., Prospective life cycle assessment of an electric vehicle equipped with a model magnesium battery, Energy, Sustainability and Society, 2024, 14 (1), art. no. 44.
DOI: 10.1186/s13705-024-00475-y
Google Scholar
[12]
Wohlschlager D., Reinhard J., Stierlen I., Neitz-Regett A., Fröhling M., Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts, Advances in Applied Energy, 2024, 16, art. no. 100195.
DOI: 10.1016/j.adapen.2024.100195
Google Scholar
[13]
Maličková L., Dzuro M., Barilová B., Lauko R., Marketing Management in Retail in the Context of the Growing Trend of Electric Vehicles, TEM Journal, 2022, 11 (3), pp.1291-1299.
DOI: 10.18421/tem113-38
Google Scholar
[14]
Mazurek P., Chudy A., An Analysis of Electromagnetic Disturbances from an Electric Vehicle Charging Station, Energies, 2022, 15 (1), art. no. 244.
DOI: 10.3390/en15010244
Google Scholar
[15]
Mazur M., Dybała J., Kluczek A., Suitable law-based location selection of high-power elevtric vehicles charging stations on the Tent-T core network for sustainability: a case of Poland, Archives of Transport, 2024 69 (1), pp.75-90.
DOI: 10.61089/aot2024.1mrj1x75
Google Scholar
[16]
Sierpiński G., Staniek M., Kłos M.J., Decision making support for local authorities choosing the method for siting of in-city ev charging stations, Energies, 2020, 13 (18), art. no. 4682.
DOI: 10.3390/en13184682
Google Scholar
[17]
Machado C.A.S., Takiya H., Yamamura C.L.K., Quintanilha J.A., Berssaneti F.T., Placement of infrastructure for urban electromobility: A sustainable approach, Sustainability (Switzerland), 2020, 12 (16), art. no. 6324.
DOI: 10.3390/su12166324
Google Scholar
[18]
Chudy A., Hołyszko P., Mazurek P., Fast Charging of an Electric Bus Fleet and Its Impact on the Power Quality Based on On-Site Measurements, Energies, 2022, 15 (15), art. no. 5555.
DOI: 10.3390/en15155555
Google Scholar
[19]
Hashemifarzad A., Faulstich M., Zum Hingst J., Jokari M., Impact of electromobility on the future standard load profile, International Journal of Smart Grid and Clean Energy, 2019. 8 (2), pp.164-173.
DOI: 10.12720/sgce.8.2.164-173
Google Scholar
[20]
Lazzeroni P., Caroleo B., Arnone M., Botta C., A simplified approach to estimate ev charging demand in urban area: An italian case study, Energies, 2021, 14 (20), art. no. 6697.
DOI: 10.3390/en14206697
Google Scholar
[21]
Skrúcaný T., Kendra M., Stopka O., Milojević S., Figlus T., Csiszár C., Impact of the electric mobility implementation on the greenhouse gases production in Central European countries, Sustainability (Switzerland), 2019, 11 (18), art. no. 4948.
DOI: 10.3390/su11184948
Google Scholar
[22]
Saqib E., Gidófalvi G., Dynamic Adaptive Charging Network Planning Under Deep Uncertainties, Energies, 2024, 17 (21), art. no. 5378.
DOI: 10.3390/en17215378
Google Scholar
[23]
Baraniak J., Starzyński J., Modeling the impact of electric vehicle charging systems on electric power quality, Energies, 13 (15), 2020, art. no. 3951.
DOI: 10.3390/en13153951
Google Scholar
[24]
Lewicki W., Coban H.H., Wróbel J., Integration of Electric Vehicle Power Supply Systems—Case Study Analysis of the Impact on a Selected Urban Network in Türkiye, Energies, 2024, 17 (14), art. no. 3596.
DOI: 10.3390/en17143596
Google Scholar
[25]
Fakhrooeian P., Hentrich R., Pitz V., Maximum Tolerated Number of Simultaneous BEV Charging Events in a Typical Low-Voltage Grid for Urban Residential Area, World Electric Vehicle Journal, 2023, 14 (7), art. no. 165.
DOI: 10.3390/wevj14070165
Google Scholar
[26]
Babu A.R., Andric J., Minovski B., Sebben S., System-level modeling and thermal simulations of large battery packs for electric trucks, Energies, 2021, 14 (16), art. no. 4796.
DOI: 10.3390/en14164796
Google Scholar
[27]
Sendek-Matysiak E., Pyza D., Łosiewicz Z., Lewicki W., Total Cost of Ownership of Light Commercial Electrical Vehicles in City Logistics, Energies, 2022, 15 (22), art. no. 8392.
DOI: 10.3390/en15228392
Google Scholar
[28]
Du C., Huang S., Jiang Y., Wu D., Li Y., Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming, Energies, 15 (12), 2022, art. no. 4325.
DOI: 10.3390/en15124325
Google Scholar
[29]
Mele E., Natsis A., Ktena A., Manasis C., Assimakis N., Electromobility and flexibility management on a non-interconnected island, Energies, 2021, 14 (5), art. no. 1337.
DOI: 10.3390/en14051337
Google Scholar
[30]
Flocea R., Hîncu A., Robu A., Senocico S., Traciu A., Remus B.M., Răboacă M.S., Filote C., Electric Vehicle Smart Charging Reservation Algorithm, Sensors, 2022, 22 (8), art. no. 2834.
DOI: 10.3390/s22082834
Google Scholar
[31]
Tucki K., Orynycz O., Mitoraj-Wojtanek M., Perspectives for mitigation of CO2 emission due to development of electromobility in several countries, Energies, 2020, 13 (6), art. no. 4127.
DOI: 10.3390/en13164127
Google Scholar
[32]
Shaban F., Siskos P., Tjortjis C., Electromobility Prospects in Greece by 2030: A Regional Perspective on Strategic Policy Analysis, Energies, 2023, 16 (16), art. no. 6083.
DOI: 10.3390/en16166083
Google Scholar
[33]
Wangsness P.B., Proost S., Rødseth K.L., Optimal policies for electromobility: Joint assessment of transport and electricity distribution costs in Norway, Utilities Policy, 2021, 72, art. no. 101247.
DOI: 10.1016/j.jup.2021.101247
Google Scholar