Optimizing Inter-Basin Water Transfer for Sustainable Energy Management and Multipurpose Water Utilization

Article Preview

Abstract:

Climate change has further exacerbated long-standing water use conflicts in the Lake Velence catchment area in Hungary. The lake is the ecological, social and economic central element of the area, with water scarcity as water levels having fallen to record lows in recent years due to severe summer droughts. As a result of infrastructure developments in the 20th century and the significant waves of immigrants in recent decades, the lake and its surroundings have been heavily modified, transformed into an artificial waterbody, while land and water use has significantly altered. Besides these negative effects on water resources and the lake’s water level, settlements in the catchment area have become the top solar energy producers per housing in Hungary in recent years. The aim of this research is to identify and develop a possible inter-basin water recharge solution that meets societal needs based on the suggested development ideas formulated in questionnaire responses. A sustainable alternative of these solutions is pumping from a nearby catchment, that was evaluated in detail. Based on ecological considerations, a multi-criteria analysis summarizing nearly 100 water quality and quantity parameters was developed to ensure that water supply meets qualitative requirements. To ensure economically sustainable operating costs, the nearby solar capacities were used for pumps operation and energy storage. For energy demand and carbon emissions reduction, the uphill pumping was complemented with a downhill turbine hydropower recovery system. Several scenarios of the pumped water recharge system were considered and hydrodynamically optimized in Matlab. The return on investment of the inter-basin pumped water replenishment systems were evaluated as well as the carbon emissions to assure additional economic benefits and low carbon-footprint. A bottom-up methodology with large scale stakeholder involvement that assesses social needs and applies well-balanced the three pillars of sustainable development, can achieve a Pareto effective displacement even during the development of a water replacement system at the catchment level and beyond, on an inter-basin level. With a comprehensive methodology developed for pumped water recharge from an external catchment using existing renewable energy sources, the deteriorating social atmosphere and ecological conditions caused by climate and land use changes may be improved. In the meantime, even economic benefits can be increased, all with a low energy demand and carbon footprint, in a sustainable way.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-309

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fu P., Jaiswal D., McGrath JM., Wang S., Long SP., Bernacchi CJ. (2022) Drought imprints on crops can reduce yield loss: Nature's insights for food security, Food Energy Security, Vol 11(1), e332, doi: 10.1002/fes3.332, PMCID: PMC9285083.

DOI: 10.1002/fes3.332

Google Scholar

[2] EU Climate Adapt (2024) Drought and water scarcity, accessed on 12 December 2024, https://climate-adapt.eea.europa.eu/en/observatory/evidence/health-effects/drought-and-water-scarcity

Google Scholar

[3] Kálmán A., Chappon M., Bene K. (2024) The Importance of Economic Evaluation in Water Management Decisions – A Case Study in the Watershed of Lake Velence, 13th HydroCarpath International Conference, Vienna

Google Scholar

[4] Nyingi, R.W. (2024) The Dynamics of Inter-basin Water Transfer under Increasing Water Demands and Climate variability: A Case of Water Transfer from Upper Tana Basin to Athi Basin

DOI: 10.1017/cbo9780511535697.015

Google Scholar

[5] Duan K., Caldwell P.V., Sun G., McNulty S.G., Qin Y., Chen X, Liu N. (2022) Climate change challenges efficiency of inter-basin water transfers in alleviating water stress, Environmental Research Letters, Vol. 17, No. 4

DOI: 10.1088/1748-9326/ac5e68

Google Scholar

[6] Meteoblue - Climate Change, accessed on 11 December 2024, https://www.meteoblue.com/hu/climate-change/velencei-hegység_magyarország_3042994

Google Scholar

[7] Chappon M., Bene K. (2023) A Velencei-tavi vízmérlegszámítás záróhibáinak elemzése és a számítási módszertan felülvizsgálata, In: Magyar Hidrológiai Társaság XL. Országos Vándorgyűlése, Budapest, Magyarország, Magyar Hidrológiai Társaság (MHT)

Google Scholar

[8] Yang Y., Chen S., Zhou Y., Ma G., Huang W., Zhu Y. (2023) Method for quantitatively assessing the impact of an inter-basin water transfer project on ecological environment-power generation in a water supply region, Journal of Hydrology, Vol 618, 129250

DOI: 10.1016/j.jhydrol.2023.129250

Google Scholar

[9] Akron A., Ghermandi A., Dayan T., Hershkovitz Y. (2017) Interbasin water transfer for the rehabilitation of a transboundary Mediterranean stream: An economic analysis, Journal of Environmental Management, Vol 202, pp.276-286

DOI: 10.1016/j.jenvman.2017.07.043

Google Scholar

[10] Purvis L., Dinar A. (2020) Are intra- and inter-basin water transfers a sustainable policy intervention for addressing water scarcity?, Water Security, Vol 9, 100058

DOI: 10.1016/j.wasec.2019.100058

Google Scholar

[11] Kék Bolygó Klímavédelmi Alapítvány (2022) Javaslat a Velencei Tó Fenntartható Vízpótlására, Kék Bolygó Klímavédelmi Alapítvány, Budapest

Google Scholar

[12] Cabo F., Erdlenbruch K., Tidball M. (2014) Dynamic management of water transfer between two interconnected river basins, Resource and Energy Economics, Vol 37, pp.17-38

DOI: 10.1016/j.reseneeco.2014.03.002

Google Scholar

[13] Peng, Z., Wu, H., Ding, M., Li, M., Huang, X., Zheng, R., & Xu, L. (2021) Ecological Compensation Standard of a Water-Receiving Area in an Inter-Basin Water Diversion Based on Ecosystem Service Value and Public Willingness: A Case Study of Beijing, Sustainability, Vol 13(9), 5236

DOI: 10.3390/su13095236

Google Scholar

[14] Wang L., Wei W., Sun G., Fu B., Chen L., Feng X., Ciais P., Mitra B., Wang L. (2024) Effects of inter-basin transfers on watershed hydrology and vegetation greening in a large inland river basin, Journal of Hydrology, Vol 635, 131234

DOI: 10.1016/j.jhydrol.2024.131234

Google Scholar

[15] Niekerk van P.H. (2013) Hydrologic-economic appraisal of inter-basin water transfer projects, Stellenbosch University, http://scholar.sun.ac.za

Google Scholar

[16] Kálmán A., Bene K. (2024) Multi-Purpose Utilization of Rainwater in a Hilly Settlement near Lake Velence, MACHINE AND INDUSTRIAL DESIGN IN MECHANICAL ENGINEERING, KOD 2024, Balatonfüred, Magyarország, 2024-05-23

DOI: 10.1007/978-3-031-80512-7_89

Google Scholar

[17] Vízügyi és Környezetvédelmi Központi Igazgatóság, VKKI (2010) A Víz Keretirányelv hazai megvalósítása VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV, 1-14. Velencei-tó, www.kdtvizig.hu

Google Scholar

[18] Chappon M., Bene K. (2023) Predicting water level changes in Lake Velence – an invitation to participate in a scientific challenge, In: HydroCarpath 2023 : Hydrology of the Carpathian Basin: Catchment Experiments and Modeling for Improved Description and Prediction of Hydrological Processes, Soproni Egyetem Kiadó, Sopron, Magyarország, 53 p., Paper P3

DOI: 10.35511/978-963-334-497-2

Google Scholar

[19] Chappon M. (2023) A Velencei-tó vízszintváltozásainak múltbeli és várható jövőbeli trendjei, illetve azok hatása a tó rekreációs hasznosítására, In Batthyány Lajos Alapítvány Doktori Ösztöndíjprogram Tanulmánykötet 2022/2023, Budapest, Magyarország, Batthyány Lajos Alapítvány, 497 p.1

Google Scholar

[20] Kálmán A., Bene K. (2023) Financial benefits from the implementation of nature-based solutions in the settlements – a case study on a catchment of Lake Velence, In: EGU General Assembly 2023: Abstracts, München, Németország, European Geosciences Union (EGU), p. EGU23-9476

DOI: 10.5194/egusphere-egu23-9476

Google Scholar

[21] http://természetvédelem.hu (2021) 'Védett Természeti Területek', accessed on 14 November 2024 (https://termeszetvedelem.hu/vedett-termeszeti-teruletek-2021-december/)

Google Scholar

[22] Közép-dunántúli Vízügyi Igazgatóság – Tógazdálkodás, accessed on 27 September 2024, https://www.kdtvizig.hu/kozep-dunantuli/vizgazdalkodas-vizszolgaltatas/togazdalkodas

Google Scholar

[23] Ramsar Sites Information Service – Velence and Dinnyés Nature Conservation Area, accessed on 29 October 2024, https://rsis.ramsar.org/ris/183

Google Scholar

[24] Boromisza, Z., Harea, O. (2023) Climate risk of shallow touristic lakes: a case study of lake Velence (Hungary), JOURNAL OF ENGINEERING SCIENCE, Vol 30(3), p.121–133

DOI: 10.52326/jes.utm.2023.30(3).08

Google Scholar

[25] Bozorg-Haddad, O., Abutalebi, M., Chu, X. et al. (2020) Assessment of potential of intraregional conflicts by developing a transferability index for inter-basin water transfers, and their impacts on the water resources, Environmental Monitoring and Assessment, Vol 192, 40

DOI: 10.1007/s10661-019-8011-1

Google Scholar

[26] Bai, T., Kang, Y., Liu, D. et al. (2024) Study on Watershed Ecological Water Replenishment Coupling Hydrodynamic and Reservoir Operation, Water Resources Management, Vol 38, p.3071–3092

DOI: 10.1007/s11269-024-03805-z

Google Scholar

[27] Snaddon C.D., Davies B.R., Wishart M.J. (1999) A Global Overview of Inter-Basin Water Transfer Schemes, with an Appraisal of Their Ecological, Socio-Economic and Socio-Political Implications, and Recommendations for Their Management, Republic of South Africa, ISBN 1 86845 583 1

Google Scholar

[28] Országos Vízügyi Főigazgatóság (2021) MAGYARORSZÁG VÍZGYŰJTŐ-GAZDÁLKODÁSI TERVE, https://vizeink.hu/vgt/#page=1

Google Scholar