Dense γ-Alon Materials Derived from SHS Synthesized Powders

Article Preview

Abstract:

Dense polycrystalline aluminium oxynitride with spinel structure, γ-alon, is noted for its excellent thermal properties, high-temperature mechanical properties, low dielectric constant, thermal expansion coefficients and intrinsic transparency extending from ultraviolet to mid-infrared wavelengths. The conventional way for synthesis of γ-alon powder is high-temperature reaction of aluminium nitride and corundum in pure nitrogen or a vacuum. The dense materials are made by reactive pressureless sintering or hot-pressing of a powder compact. This work is focused on preparation of γ-alon materials derived from SHS synthesized powders. The powders for sintering were synthesized from mixtures of aluminium and corundum powders of different proportions. The products of the SHS synthesis were composed mostly of γ-alon and aluminium nitride with small amount of non-reacted substrates. Ground powders were hot-pressed at 1750, 1850 and 1950°C for 1 h under 25 MPa in nitrogen flow. Such procedure allowed dense material composed of pure γ-alon with good mechanical properties to obtain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1052-1057

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. McCauley: J. Am. Ceram. Soc. 61 (1978), p.372.

Google Scholar

[2] C.K. Carlone, M. Lakin and H.R. Shanks: J. Appl. Phys. 55 (1984), p.4010.

Google Scholar

[3] P. Perlin, A. Polian and T. Suski: Physical Rev. 47 (1993), p.2874.

Google Scholar

[4] E. Ruiz, S. Alvarez and P. Alemany: Physical Rev. 49 (1994), p.7115.

Google Scholar

[5] W. Xidong, W. Fuming and L. Wenchao: Mat. Sci. & Eng. A342 (2003), p.245.

Google Scholar

[6] J.W. McCauley and N.D. Corbin: J. Am. Ceram. Soc. 62 (1979), p.476.

Google Scholar

[7] I. Adams, T.R. AuCoin and G.A. Wolff: J. Electrochem. Soc, 109 (1962), p.1050.

Google Scholar

[8] P. Tabary and C. Servant: Calphad 22 (1998), p.179.

Google Scholar

[9] H. Takebe, T. Kameda, M. Komatsu, K. Komeya and K. Morinaga: J. Ceram. Soc. Jpn. 97 (1989), p.166.

Google Scholar

[10] H. Fukuyama, W. Nakao, M. Susa and K. Nagata: J. Amer. Ceram. Soc. 82 (1999), p.1381.

Google Scholar

[11] G. Yamaguchi and H. Yanagida: Bull. Chem. Soc. Jpn. 32 (1959), p.1264.

Google Scholar

[12] V. Rafaniello and I.B. Cutler: J. Am. Ceram. Soc. 64 (1981), p. C-128.

Google Scholar

[13] M. Ish-Shalom: J. Mater. Sci. Lett. 1 (1982), p.147.

Google Scholar

[14] J. Zheng and B. Forslund: J. Eur. Ceram. Soc. 15 (1995), p.1087.

Google Scholar

[15] L. Yawei, L. Nan and Y. Runzhang: J. Mater. Set. Lett. 16 (1997), p.185.

Google Scholar

[16] L. Yawei, L. Nan and Y. Runzhang: J. Mater. Sci. 32 (1997), p.979.

Google Scholar

[17] R. Bouriannes, A. Hardy and N. Manson: C. R. Acad. Sci. Set. C. 274 (1972), p.817.

Google Scholar

[18] A. Gromov, A. Ilyin, A. Ditts and V. Vereshchagin: J. Eur. Ceram. Soc. 25 (2005), p.1575.

Google Scholar

[19] Y.W. Kim, H.C. Park, Y.B. Lee, K.D. Oh and R. Stevens: J. Eur. Ceram. Soc. 21 (2001), p.2383.

Google Scholar

[20] I.U. Kim and V.L. Richards: J. Am. Ceram. Soc. 68 (1985), p. C-120.

Google Scholar

[21] N.D. Corbin: J. Eur. Ceram. Soc. 5 (1989), p.143.

Google Scholar

[22] Y.W. Kim, B.H. Park, Y.B. Lee, K.D. Oh and F.L. Riley: Br. Ceram. Trans. 97 (1998), p.97.

Google Scholar

[23] A. Maghsoudipour, M.A. Bahrevar, J. G. Heinrich and F. Moztarzadeh: J. Eur. Ceram. Soc. 25 (2005), p.1067.

Google Scholar

[24] K. Niihara: J. Mat. Sci. Lett. 2 (1983), p.221.

Google Scholar