Nanostructured Ceramic Thin Films and Membranes by Wet Chemical Processing Methods

Article Preview

Abstract:

Nanostructured ceramic thin films and membranes are used for protective or functional purposes and prepared on dense or porous substrate materials. Wet chemical methods enable cheap, low-temperature, mass-scale manufacturing routes. They produce fine-grained porous and dense micro-structures that cannot be realized otherwise. In wet-chemical processing, clean nanoparticle dispersions are deposited on the substrate at, primarily, ambient conditions. The deposition is followed by a (rapid) thermal processing treatment to remove liquids and organic additives, to convert precursors to the target composition, and to establish the final porous and dense micro-structure. In the synthesis of precursor dispersions it is very important to obtain nanoparticles with a near-isometric shape and a fairly narrow particle size distribution, without the formation of secondary (agglomerate) structures. In particular the latter requires careful control of solution and interfacial chemistry to achieve proper colloidal stability, during and after the synthesis process. Characterization of coating integrity, defect morphology and defect population is done by decoration methods, microscopy, ellipsometry and statistical methods that employ membrane transport properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1252-1259

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sayer and K. Sreenivas: Science Vol. 247 (1990), p.1056.

Google Scholar

[2] H. Chen, Y. Zhang and C. Ding: Wear Vol. 253 (2002), p.885.

Google Scholar

[3] M. Gell: Mater. Sci. Eng. A Vol. 204 (1995), p.246.

Google Scholar

[4] K. Izumi, M. Murakami, T. Deguchi and A. Morita: J. Am. Ceram. Soc. Vol. 72 (1989), p.1465.

Google Scholar

[5] H. Verweij: Adv. Mater. Vol. 10 (1998), p.1483.

Google Scholar

[6] B.C.H. Steele and A. Heinzel: Nature Vol. 414 (2001), p.345.

Google Scholar

[7] E. Ivers-Tiffee, A. Weber and D. Herbstritt: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1805.

Google Scholar

[8] A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld and K.S. Goto: J. Electrochem. Soc. Vol. 139 (1992), p.3690.

DOI: 10.1149/1.2069145

Google Scholar

[9] G. Sberveglieri: Sensors and Actuators B Vol. 23 (1995), p.103.

Google Scholar

[10] C. Feldmann: Adv. Mater. Vol. 13 (2001), p.1301.

Google Scholar

[11] J. Merikhi, H.O. Jungk, C. Feldmann: J. Mater. Chem. Vol. 10 (2000), p.1311.

Google Scholar

[12] F.C.M. Woudenberg, W.F.C. Sager, N.G.M. Sibelt and H. Verweij: Adv. Mater. Vol. 13 (2001), p.514.

Google Scholar

[13] J. Shi and H. Verweij: Langmuir Vol. 21 (2005), p.5570.

Google Scholar

[14] J.C. Yu, L. Zhang, Q. Li, K.W. Kwong, A.W. Xu and J. Lin: Langmuir Vol. 19 (2003), p.7673.

Google Scholar

[15] M. Xu, Y. Lu, U. Liu, S. Shi, T. Qian and D. Lu: Powder Techn. Vol. 161 (2006), p.185.

Google Scholar

[16] S.C. Tjong and H. Chen: Mater. Sci. Eng. R Vol. 45 (2004), p.1.

Google Scholar

[17] C. Burda, X. Chen, R. Narayanan and M.A. El-Sayed: Chem. Rev. Vol. 105 (2005), p.1025.

Google Scholar

[18] M.N. Rahaman: Ceramic processing and Sintering (2 nd Edition, Dekker 2003).

Google Scholar

[19] D.H. Napper: Polymeric Stabilization of Colloidal Dispersions (Academic Press, London 1983).

Google Scholar

[20] J. Shi and H. Verweij: Langmuir Vol. 21 (2005), p.5570.

Google Scholar

[21] M.L. Mottern, M. Oyola, K. Shqau, D. Yu and H. Verweij: Proceedings PCM 2005, Brugge, Belgium, October 20-21, (2005).

Google Scholar

[22] M.L. Mottern, F. Tyholdt, A. Ulyashin, A.T.J. van Helvoort, H. Verweij and R. Bredesen: Thin Solid Films, submitted.

DOI: 10.1016/j.tsf.2006.11.015

Google Scholar

[23] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker and J. Stollenwerk: Thin Solid Films Vol. 326 (1998), p.72.

DOI: 10.1016/s0040-6090(98)00521-5

Google Scholar