Second Generation High-k Gate Insulators

Article Preview

Abstract:

Very high (k>25) permittivity materials have been investigated as a second step high-k gate insulator. These are all formed by adding other materials to the basic HfO2. Hafnium titanate thin films were deposited by chemical vapor deposition (CVD). It was observed that both the interfacial layer (IL) EOT and the permittivity increase with Ti content and that films with higher Ti content are also more immune to crystallization. Permittivities as high as 50 were achieved. In the MOSFET devices with the hafnium titanate films, normal transistor characteristics were observed, including electron mobility degradation. In SrHfO3 films, deposited by physical vapor deposition (PVD), a permittivity as high as 35 was achieved. These films appear to be highly stable upon high temperature annealing, but show a thick, anomalous interfacial layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1342-1350

Citation:

Online since:

October 2006

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. J. Lee, H. F. Luan, W. P. Bai, C. H. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, Tech. Dig. - Int. Electron Devices Meet., pp.31-34, (2000).

Google Scholar

[2] S. Sayan, S. Aravamudhan, B. W. Busch, W. H. Schulte, F. Cosandey, G. D. Wilk, T. Gustafsson, and E. Garfunkel, Vac. Sci. Technol. A, vol. 20, pp.507-512, (2002).

DOI: 10.1116/1.1450584

Google Scholar

[3] S. A. Campbell, T. Ma, R. Smith, N. Hoilien, B. He, W. L. Gladfelter, C. Hobbs, C. Taylor, and M. Coppel, IEEE Trans. Electron Devices, vol. 37, pp.2348-2356, (2001).

DOI: 10.1109/16.954476

Google Scholar

[4] V. V. Afanas'ev, A. Stesmans, F. Chen, M. Li, and S. A. Campbell, J. Appl. Phys., vol. 95, pp.7936-7939, (2004).

Google Scholar

[5] H. D. Kim, Y. Roh, Y. Lee, J. E. Lee, D. Jung, and N. E. Lee, J. Vac. Sci. Technol. A, vol. 22, pp.1347-1350, (2004).

Google Scholar

[6] G. D. Wilk, M. L. Green, M. -Y. Ho, B. W. Busch, T. W. Sorsch, F. P. Klemens, B. Brijs, R. B. Van Dover, A. Kornblit, T. Gustafsson, E. Garfunkel, S. Hillenius, D. Monroe, P. Kalavade, and J. M. Hergenrother, VLSI Symp. Tech. Dig., pp.88-89, (2002).

DOI: 10.1109/vlsit.2002.1015401

Google Scholar

[7] W. Zhu, T. P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibson, and T. Furukawa, Tech. Dig. - Int. Electron Devices Meet., pp.463-466, (2001).

Google Scholar

[8] M. Gutowski, J. E. Jaffe, C. -L. Liu, M. Stoker, R. I. Hegde, Raghaw S. Raj, and Philip J. Tobin, Appl. Phys. Lett., vol. 80, pp.1897-1899, (2002).

Google Scholar

[9] E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D'Emic, Microelectron. Eng., vol. 59, pp.341-349, (2001).

DOI: 10.1016/s0167-9317(01)00667-0

Google Scholar

[10] J. Robertson, Appl. Surf. Sci., vol. 190, pp.2-10, (2002).

Google Scholar

[11] B. H. Lee, R. Choi, L. Kang, S. Gopalan, R. Nieh, K. Onishi, Y. Jeon, W. -J. Qi, C. Kang, and J. C. Lee, Tech. Dig. - Int. Electron Devices Meet., pp.39-42, (2000).

DOI: 10.1109/iedm.2000.904253

Google Scholar

[12] J. H. Sim, B. H. Lee, R. Choi, K. Matthews, D. L. Kwong, L. Larson, P. Tsui, P., and G. Bersuker, Tech. Dig. - Dev. Res. Conf., pp.99-100, (2004).

Google Scholar

[13] C. S. Kang, H. -J. Cho, R. Choi, Y. -H. Kim, C. Y. Kang, Se Jong Rhee, Changhwan Choi, Mohammad Shahariar Akbar, and Jack C. Lee, IEEE Trans. Electron Devices, vol. 51, pp.220-227, (2004).

DOI: 10.1109/ted.2003.821707

Google Scholar

[14] K. Kukli, J. Ihanus, M. Ritala, and M. Leskela, Appl. Phys. Lett., vol. 68, pp.3737-3739, (1996).

DOI: 10.1063/1.115990

Google Scholar

[15] F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, Microelectron. Eng., vol. 72, pp.263-266, (2004).

Google Scholar

[16] M. A. Cameron and S. M. George, Thin Solid Films, vol. 348, pp.90-98, (1999).

Google Scholar

[17] C. Taylor, D. Gilmer, D. Colombo, G. Wilk, S. A. Campbell, J. Roberts, and W. L. Gladfelter, J. Am. Chem. Soc., vol. 121, pp.5220-5229, (1999).

Google Scholar

[18] J. R. Hauser and K. Ahmed, presented at Characterization and metrology for ULSI technology: 1998 Int. Conf., (1998).

Google Scholar

[19] J. R. Hauser, IEEE Trans. Electron Dev., vol. 43, pp.1981-1988, (1996).

Google Scholar

[20] M. Li, Z. Zhang, S. A. Campbell, W. L. Gladfelter, M. P. Agustin, D. O. Klenov, and S. Stemmer, J. Appl. Phys., vol. 98, pp.054506-8, (2005).

Google Scholar

[21] K. Honda, A. Sakai, M. Sakashita, H. Ikeda, S. Zaima, and Y. Yasuda, Jpn. J. Appl. Phys., vol. 43, pp.1571-1576, (2004).

Google Scholar

[22] T. Ma, The fabrication and characterization of MOSFETs with titanium dioxide and hafnium oxide as gate dielectrics, in Department of Electrical and Computer Engineering. Minneapolis: University of Minnesota, (2001).

Google Scholar

[23] S. M. Sze, Physics of semiconductor devices. New York: John Wiley & Sons, (1981).

Google Scholar

[24] Z. Xu, M. Houssa, S. D. Gendt, and M. Heyns, Appl. Phys. Lett., vol. 80, pp.1975-1977, (2002).

Google Scholar

[25] V. Afanas'ev, Houssa, M., Stesmans, A., and Heyns, M. M., Appl. Phys. Lett., vol. 78, p.3073, (2001).

Google Scholar

[26] V. V. Afanas'ev, Houssa, M., Stesmans, A., and Heyns, M. M., J. Appl. Phys., vol. 91, p.3079, (2002).

Google Scholar

[27] V. V. Adamchuk V. K. and Afanas'ev, Prog. Surf. Sci., vol. 41, p.111, (1992).

Google Scholar