Ceramic Composites and Thermal Protection Systems for Reusable Re-Entry Vehicles

Article Preview

Abstract:

Next generation of reusable launch vehicles and new hypersonic space vehicle concepts are currently under development, moving from traditional aerodynamic configuration towards slender profiles. Main expected benefits are reduction of drag, enhancement in lift-to-drag ratio and reduction of interferences with radio frequency transmissions during the re-entry. Flexibility in designing sharp profiles is strictly conditioned to the availability of suitable materials and processing technologies, required to fabricate components and surfaces able to withstand higher heat fluxes induced by the new profiles. Advances in the field of CMC's for high temperature structures and TPS are the basis for innovative approaches to the design of future RLV's. Beside baseline solutions, already available and well characterized, as for C/SiC CMC's, ultra high temperature ceramics seem to offer the right chance to fabricate hot structures having the required heat-resistant and load carrying capabilities. This paper deals with technologies based on the use of diboride based CMC's which can be considered promising candidate materials for the fabrication of hot structures of slender bodies, such as nose cap and wing leading edges. Recent experimental results will be presented and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1505-1514

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.O. Wolfe, Proc. 3rd Symp. Naval Struct. Mech., Pergamon Press, New York (1984).

Google Scholar

[2] Report Boeing C.A. for NASA Evaluation of Civil Hypersonic transport reliability, Langley Res. Center, (1990).

Google Scholar

[3] S. Drawin, Onera Rep., 72 (1994) pp.345-357.

Google Scholar

[4] S. Drawin, Ann. Chim. (Paris), 17 (7-8) (1992) pp.455-69.

Google Scholar

[5] M.P. Gordon, Space Shuttle Orbiter Thermal Protection System Processing Assessment Final Report, TPS Orbiter Engineering Materials & Processes (May 1995).

Google Scholar

[6] J. Bull, M.J. White, L. Kauffman, U.S. Patent 5, 750, 450 (1998).

Google Scholar

[7] B. Morel, U.S. Patent 5, 240, 084 (1995).

Google Scholar

[8] E. Clougherty, AMFL-TR-68-190 Part II Vol. VII (1968).

Google Scholar

[9] E.V. Clougherty, E.T. Peters, D. Kalish, in Mater. Processes 70's: 15th Nat. SAMPE (Soc. Aerosp. Mater. Process Eng. ) Symp. Exhib., (1969), pp.297-308.

Google Scholar

[10] L. Kaufman, NSWC TR 86-242 (1986).

Google Scholar

[11] J. Bull, NASA CP-3175 Part1.

Google Scholar

[12] J. Salute, Sharp: Thermal Protection System Optimization, NASA Ames Research Center Report (July 2000).

Google Scholar

[13] J. Cast, D. Morse Sharp Flight Test Press Release, NASA Ames Research Center Report (May 1997).

Google Scholar

[14] A. Hutchinson, J. Malone Sharp Flight Test Press Release, NASA Ames Research Center Report (September 2000).

Google Scholar

[15] C. Bartuli, T. Valente, M. Tului: in Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, E.F. Lugscheider Eds, ASM Int. Publ., Materials Park, OH, USA 2001, pp.259-262.

DOI: 10.31399/asm.cp.itsc2001p1075

Google Scholar

[16] T. Valente, C. Bartuli, G. Visconti, M. Tului, in Thermal Spray. Surface Engineering via Applied Research, C. Berndt Ed., ASM International, Materials Park, OH, (2000), pp.837-841.

DOI: 10.31399/asm.cp.itsc2000p0837

Google Scholar

[17] C. Bartuli, T. Valente, M. Tului, Surface and Coatings Technology, 155 (2-3) (2002) pp.260-273.

DOI: 10.1016/s0257-8972(02)00058-0

Google Scholar

[18] S.S. Orda'yan, A.I. Dmitriev, E.S. Moroshkina, Itv. Akad. Nauk, USSR 25 (10), (1989) pp.1752-1755.

Google Scholar

[19] M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykoski, S. J. Causey, Journal of the European Ceramic Society, 19 (1999), pp.2405-2414.

DOI: 10.1016/s0955-2219(99)00129-6

Google Scholar

[20] M. M. Opeka, I. G. Talmy, J. A. Zaykosky, Journal of materials science, 39 (2004), 5887- 5904.

Google Scholar

[21] E. Opila, S. Levine, J. Lorincz, Journal of materials science, 39 (2004), 5969-5977.

Google Scholar

[22] A.K. Kuriakose, J.L. Margrave, Journal of Electrochemical Society, 111 (7) 1964, pp.827-831.

Google Scholar

[23] J. B. Berkowitz-Mattuk, Journal of Electrochemical Society, 113 (9) 1966, pp.908-913.

Google Scholar

[24] R. J. Irving, I. G. Worsley, Journal of less-common metals, 16, 1968, pp.103-112.

Google Scholar

[25] S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, J.A. Salem, Journal of the European Ceramic Society, 22 (2002), pp.2757-2767.

DOI: 10.1016/s0955-2219(02)00140-1

Google Scholar

[27] W. C. Tripp, H. C. Graham, Journal of Electrochemical Society, Solid State Science, 118 (7) 1971, pp.1195-1199.

Google Scholar

[28] W. C. Tripp, H. H. Davis, H. C. Graham, American Ceramic Society Bulletin, 52 (8) 1973, pp.612-616.

Google Scholar

[29] D.A. Krivoshein, M.A. Maurakh, V.S. Dergunova, V.S. Petrov, Poroshkovaiya Metall. 8, 1980, 58-62.

Google Scholar

[30] A. Mizutani, J. Tsuge, J. Ceram. Soc. Japan, 100 (8), 1992, 991-997.

Google Scholar

[31] G.R. Anstis, P. Chantikul, .R. Lawn, J. Am. Cer. Soc., 64 (1981) 533.

Google Scholar

[32] K. Niihara, R. Morena, D.P.H. Hasselman, J. Mat. Sci. Lett. 1 (1982) 13.

Google Scholar

[33] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, J. Mat. Sci. 10 (1985) 1873.

Google Scholar

[34] J. Halling: Principles of Tribology (Macmillan Press LTD 1978).

Google Scholar