Solid Oxide Fuel Cells: Status, Challenges and Opportunities

Article Preview

Abstract:

A solid oxide fuel cell (SOFC) electrochemically converts chemical energy of a fuel into electricity at temperatures from about 650 to 1000oC. SOFCs offer certain advantages over lower temperature fuel cells, notably ability to use CO as a fuel rather than being poisoned by it, and high grade exhaust heat for combined heat and power, or combined cycle gas turbine applications. This paper reviews the operating principle, materials for different cell and stack components, cell designs, and applications of SOFCs. Among different designs of solid oxide fuel cells (SOFCs), the electrical resistance of tubular SOFCs is high, and areal power density (W/cm2) and volumetric power density (W/cm3) low. Planar SOFCs, in contrast, are capable of achieving very high power densities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1837-1846

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C. Singhal, Mat. Res. Soc. Bull., Vol. 25 (2000), p.16.

Google Scholar

[2] S. C. Singhal, Solid State Ionics, Vol. 135 (2000), p.305.

Google Scholar

[3] S. C. Singhal and K. Kendall: High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, (Elsevier, Oxford, UK, 2003).

Google Scholar

[4] J. W. Stevenson, P. Singh, and S. C. Singhal, Fuel Cell Review, Vol. 2 (2005), p.15.

Google Scholar

[5] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, Nature Materials, Vol. 3 (2004), p.17.

DOI: 10.1038/nmat1040

Google Scholar

[6] E. P. Murray, T. Tsai, and S. A. Barnett, Nature, Vol. 400 (1999), p.649.

Google Scholar

[7] J-W. Kim, A. Virkar, K-Z. Fung, K. Mehta, and S. C. Singhal, J. Electrochem. Soc., Vol. 146 (1999), p.69.

Google Scholar

[8] W.A. Surdoval, S. C. Singhal, and G. L. McVay, in: SOFC-VII, H. Yokokawa and S. C. Singhal (Eds. ), The Electrochemical Society Proceedings Series, PV2001-16, p.53, (Pennington, NJ, USA, 2001).

Google Scholar

[9] G. DiGiuseppe, in: SOFC-IX, S. C. Singhal and J. Mizusaki, (Eds. ), The Electrochemical Society Proceedings Series, PV2005-07, p.322, (Pennington, NJ, USA, 2005).

Google Scholar

[10] U. B. Pal, and S. C. Singhal, J. Electrochem. Soc., Vol. 137 (1990), p.2937.

Google Scholar

[11] L. J. H. Kuo, S. D. Vora, and S. C. Singhal, J. Am. Ceram. Soc., Vol. 80 (1997), p.589.

Google Scholar

[12] S. D. Vora, Fuel Cell Seminar Extended Abstracts, (Courtesy Associates, Washington, DC, USA, 2005).

Google Scholar

[13] M. C. Williams, J. P. Strakey, and S. C. Singhal, J. Power Sources, Vol. 131 (2004), p.79.

Google Scholar

[14] S. Mukerjee, M. J. Grieve, K. Haltiner, M. Faville, J. Noetzel, K. Keegan, D. Schumann, D. Armstrong, D. England, J. Haller, and C. DeMinco, in: SOFC-VII, H. Yokokawa and S. C. Singhal (Eds. ), The Electrochemical Society Proceedings Series, PV2001-16, p.173.

Google Scholar

[15] J. Botti, in: SOFC-VIII, S. C. Singhal and M. Dokiya (Eds. ), The Electrochemical Society Proceedings Series, PV2003-07, p.16, (Pennington, NJ, USA, 2003).

Google Scholar