Electrochemical Active Parts at Electrode/Electrolyte Interfaces for Solid Oxide Fuel Cells (SOFCs) by Isotope Labeling-SIMS Analysis

Article Preview

Abstract:

The electrochemical reaction of solid oxide fuel cells (SOFCs) was reviewed in terms of mass and charge transports of reaction species around the electrode/electrolyte interfaces. Oxygen reduction and fuel oxidation were analyzed by isotope labeling and secondary ion mass spectrometry as well as conventional electrochemical method. The SIMS images after 18O2 (stable isotope oxygen) labeling suggested that the O2/cathode/electrolyte interfaces were the most active parts for oxygen reduction and incorporation. The widths of active parts of oxygen reduction were about several 100 to some 1000 nm different depending on the cathode materials and reaction mechanism. The isotope labeling-SIMS technique was also applied to visualize the active parts for CH4 decomposition and carbon deposition around the anode metal/electrolyte oxide interfaces. The active parts for carbon deposition were only on the Ni surface on YSZ electrolyte. The effect of substrate oxide on the carbon deposition was also examined at the mesh-shaped metal/oxide interfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1857-1863

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells, Elsevier Science Amsterdam, The Netherlands (2003).

Google Scholar

[2] B. C. H. Steele Solid State Ionics, 134, ( 2000) 3.

Google Scholar

[3] M. J. Jørgensen, S. Primdahl, C. Bagger, M. Mogensen, Solid State Ionics, 139, (2001) 1.

Google Scholar

[4] T. Tsai, S. A. Barnett, Solid State Ionics, 93, (1997) 207.

Google Scholar

[5] N. T. Hart, N. P. Brandon, M. J. Day, N. Lapena-Rey, J. Power Sources, 106, (2002) 42.

Google Scholar

[6] E. P. Murray, M. J. Sever, S. A. Barnett, Solid State Ionics, 148, (2002) 27.

Google Scholar

[7] Y. Huang, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc., 152 (7) (2005) A1347.

Google Scholar

[8] V. Dusastre and J. A. Kilner, Solid State Ionics, 126, (1999) 163.

Google Scholar

[9] H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya, J. Electrochem. Soc. 144, (1997) 641.

DOI: 10.1149/1.1837460

Google Scholar

[10] T. Fukui, T. Oobuchi, Y. Ikuhara, S. Ohara, K. Kodera, J. Am. Ceram. Soc., 80, (1997) 261.

Google Scholar

[11] A. C. Müller, D. Herbstritt, E. Ivers-Tiffée, Solid State Ionics, 152-153, (2002) 537.

Google Scholar

[12] S. P. Jiang, W. Wang, Y. D. Zhen, J. Power Sources, 147, (2005) 1.

Google Scholar

[13] H. He, J. M. Vohs, and R. J. Gorte, J. Electrochem., Soc., 150, (2003) A1470.

Google Scholar

[14] S-I. Lee, J. M. Vohs, and R. J. Gorte, J. Electrochem., Soc., 151, (2004) A1323.

Google Scholar

[15] B. A. van Hassel, B. A. Boukamp, A. J. Burggraaf, Solid State Ionics, 48, (1991) 155.

Google Scholar

[16] H. Kamata, A. Hosaka, J. Mizusaki, H. Tagawa, Solid State Ionics, 106, (1998), 237.

Google Scholar

[17] T. Ioroi, T. Hara, Y. Uchimoto, Z. Ogumi, Z. Takehara, J. Electrochem. Soc., 145, (1998) (1999).

Google Scholar

[18] S. B. Adler, J. A. Lane, B. C. H. Steele, J. Electrochem. Soc., 143 (1996), 3554.

Google Scholar

[19] A. Mitterdorfer, L. J. Gauckler, Solid State Ionics, 117, (1999), 187.

Google Scholar

[20] T. Kawada, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya and J. Mizusaki, Solid State Ionics, 131, (2000) 199.

Google Scholar

[21] J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, K. Hashimoto, J. Electrochem. Soc., 141, (1994) 2129.

DOI: 10.1149/1.2055073

Google Scholar

[22] A. Bieberle, L. J. Gauckler, Solid State Ionics, 135, (2002) 337.

Google Scholar

[23] A. Bieberle, L. J. Gauckler, Solid State Ionics, 146, (2002) 23.

Google Scholar

[24] S. P. Jiang, S. P. S. Badwal, J. Electrochem. Soc., 144, (1997) 3777.

Google Scholar

[25] S. P. Jiang, S. P. S. Badwal, Solid State Ionics 123, (1999) 209.

Google Scholar

[26] P. Holtappels, L. G. J. de Haart, U. Stimming, J. Electrochem. Soc., 146, (1999) 1620.

Google Scholar

[27] T. Horita, K. Yamaji, M. Ishikawa, N. Sakai, H. Yokokawa, T. Kawada, and T. Kato, J. Electrochem. Soc., 145, (1998) 3196.

Google Scholar

[28] T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada and T. Kato, Solid State Ionics, 127, (2000) 55.

Google Scholar

[29] T. Horita, K. Yamaji, N. Sakai, Y. Xiong, T. Kato, H. Yokokawa and T. Kawada, J. Power Sources, 106, (2002) 224.

DOI: 10.1016/s0378-7753(01)01017-5

Google Scholar

[30] T. Horita, K. Yamaji, T. Kato, N. Sakai, H. Yokokawa, Solid State Ionics, 169, (2004) 105.

Google Scholar

[31] T. Horita, K. Yamaji, T. Kato, N. Sakai, H. Yokokawa, J. Power Sources 131, (2004) 299.

Google Scholar

[32] T. Horita, K. Yamaji, T. Kato, N. Sakai, H. Yokokawa, Solid State Ionics, 172, (2004) 93.

Google Scholar