[1]
OOF: Objected-Oriented Finite Element Analysis of Real Material Microstructures Working Group, downloaded from http: /www. ctcms. nist. gov/oof/ on 10 May (2006).
Google Scholar
[2]
A Finite Element Primer, Published by the National Agency for Finite Element Methods and Standards (NAFEMS), UK. 2nd Reprint (1991).
Google Scholar
[3]
Poirier, J., 2003, Thermomechanical Simulations of Refractory Linings: An Overview, Refractories Applications and News, Vol. 8, No. 6, pp.16-22.
Google Scholar
[4]
Noble, L.L., 2005, Quantative Relationships Between Stress Distributions, Microstructure and High Strain Rate Performance of Advanced Ceramics: A Preliminary Report, To be presented at the 13th Annual ARL/USMA Technical Symposium November 2.
Google Scholar
[5]
Auer, T., Manhart, C., Harmuth, H., 2006, Contributions to Refractory Fracture Mechanical and Fractographic Investigations, RHI Bull, No. 1, pp.38-42.
Google Scholar
[6]
Yousef, S.G., Rodel, J., Fuller, E.R., Zimmermann, A., El-Dasher, B.S., 2005, Microcrack Evolution in Alumina Ceramics: Experiment and Simulation, Journal for American Ceramic Society, Vol. 88, pp.2809-2816.
DOI: 10.1111/j.1551-2916.2005.00312.x
Google Scholar
[7]
Espinosa, H.D., Lee, S., 2002, Advance in Micro Scale Modelling of Failure Mechanisms in Ceramics and Fiber Composites, The First Sino-Joint Symposium on Multi-Scale Analysis in Material Sciences and Engineering, Beijing, China.
Google Scholar
[8]
Sukumar, N., Srolovitz, D.J., Baker, T.J., Prevost, J.H., 2003, Brittle Fracture in Polycrystalline Microstructure with the Extended Finite Element Method, International Journal For Numerical Methods in Engineering, Vol. 56, p.2015 - (2037).
DOI: 10.1002/nme.653
Google Scholar
[9]
Ghosh sited by 10.
Google Scholar
[10]
Weyer, S., Fröhlich, A., Riesch-Oppermann, H., Cizelj, L., Kovač, M., 2000, Automatic Finite Element Meshing of Planar Voronoi Tessellations. Submitted to Engineering Fracture Mechanics.
DOI: 10.1016/s0013-7944(01)00124-2
Google Scholar
[11]
Plankensteiner, A.F., Parteder, E., Riedel, H., Sun, D.Z., 1999, Micromechanism Based Macrostructural Finite Element Analysis of the Sintering Behaviour of Refractory Metal Parts using ABAQUS, 1999 ABAQUS Users' Conference, pp.643-657.
Google Scholar
[12]
Blond, E., Schmitt, N., Hild, F., Blumenfeld, P., Poirier., 2005, Modelling of the High Temperature Assymetric Creep Behaviour of Ceramics, Journal of the European Ceramic Society, Vol. 25, pp.1819-1827.
DOI: 10.1016/j.jeurceramsoc.2004.06.004
Google Scholar
[13]
Kovac, M., Cizelj, L., Modelling Elasto-Plastic Behaviour of Polycrystalline Grain Structure of Steels at Mesoscopic Level, Josef Stefan Institute, Reactor Engineering Division, Slovenia.
Google Scholar
[14]
Lee, W.E., Moore, R.R., 1998, Evolution of In Situ Refractories in the 20th Century. Journal of the American Ceramic Society. Vol. 81, pp.1385-1410.
DOI: 10.1111/j.1151-2916.1998.tb02497.x
Google Scholar
[15]
Farn, S., 2004, Thermochemical Corrosion of Alumina-Zirconia-Silica Refractories for Glass Furnace Regenerators, A Ph.D. thesis presented at Keele University, UK.
Google Scholar
[16]
S.J. Stedman, J.R.G. Evans, 1993, R.J. Brook & M.J. Hoffmann. Journal of the European Ceramic Society No. 11, Vol. 523.
Google Scholar