Colloidal Processing of Powder for Membrane Applications

Article Preview

Abstract:

Consolidation of colloidal particles onto porous ceramic substrate is the critical issue in the ceramic membrane preparation. The membrane functional properties are determined mainly by the powder properties, but also by the colloidal condition of the slip. This presentation concentrates on the colloidal processing of submicron alumina for the membrane preparation and for the membrane layer formation based on the capillary colloidal filtration. The solid content of the slip and the degree of deflocculation are the primary factors for the control of the membrane layer growth and pore properties. Electrostatic and electrosteric dispersion lead into different degree of deflocculation and different surface charge, which further resulted on differences in membrane layer growth behavior. Additives, such as polyelectrolytes, electrolytes, binders have also effect on the colloidal condition of the slip, but also have effect on the properties of the liquid phase of the slip. Changes in viscosity and surface tension of liquid phase have also significant effect on the membrane layer growth behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-390

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. Burggraaf, L. Cot (eds): Fundamentals of Inorganic Membrane Science and Technology (Elsevier Science B.V., Amsterdam, 1996).

Google Scholar

[2] R.R. Bhave: Inorganic Membranes. Synthesis, Characteristics and Applications, (Chapman & Hall, New York, 1991).

Google Scholar

[3] P. M. Biesheuvel and H. Verweij: J. of Membrane Science Vol. 156 (1999), p.141.

Google Scholar

[4] T. Van Gestel, C. Vandecsteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B Van der Bruggen and G. Maes: J. of Membrane Science Vol 207 (2002), p.73.

DOI: 10.1016/s0376-7388(02)00053-4

Google Scholar

[5] B. C. Bonecamp: p.141 in Fundamentals of Inorganic Membrane Science and Technology, eds. A. J. Burggraaf and L. Cot (Elsevier Science B.V., Amsterdam, 1996).

Google Scholar

[6] N. Das and H.S. Maiti: J. of Eur. Ceram. Soc. Vol. 19 (1999), p.342.

Google Scholar

[7] Y. Gu and G. Meng: J. of Eur. Ceram. Soc. Vol. 19 (1999) p. (1961).

Google Scholar

[8] K. Darcovitch, D. Roussel and F. N. Toll: J. of Membrane Science Vol. 183 (2001) p.293.

Google Scholar

[9] P. Wang, P Huang, N. Xu, J. Shi and Y.S. Lin: J. of Membrane Science Vol. 155 (1999) p.309.

Google Scholar

[10] E. Levänen and T. Mäntylä: J. of Eur. Ceram. Soc. Vol 22 (2002) p.613.

Google Scholar

[11] P. Mikkola, P. Ylhä, E. Levänen and J. B. Rosenholm: Ceram. Intern. Vol. 30 (2004) p.291.

Google Scholar

[12] E. Levänen, T. Mäntylä, P. Mikkola, and J. B. Rosenholm: J. of Coll. and Interf. Sci. Vol. 234 (2001) p.28.

Google Scholar

[13] P. Mikkola, E. Levänen, T. Mäntylä and J. B. Rosenholm: Ceram. Intern. Vol. 29 (2003) p.393.

Google Scholar

[14] E. Levänen, T. Mäntylä, P. Mikkola, and J. B. Rosenholm: J. of Coll. and Interf. Sci Vol. 234 (2001) p.28.

Google Scholar