3-D Structures via Tape Casting and Lamination

Article Preview

Abstract:

Miniaturisation and multi-functionality are the driving forces in the field of many technical market segments. Ceramic multilayer technology via tape casting and lamination is one of the key technologies to generate complex, highly integrated devices for future applications. The technique offers a tremendous potential for the integration of different materials combined with the possibility to form complex 3-D structures by layered object manufacturing. The ceramic multilayer technology is based on shaping, screen-printing and stacking of individual ceramic green tapes, which are laminated and co-fired. The tapes can offer ferroelectric, piezoelectric and magnetic behaviour, insulating and semi-conducting properties, voltage-, temperature- and atmosphere-dependent resistances, high thermal conductivity, corrosion resistance, or bio inert behaviour. For the integration of additional features like reactors or sensors, the described layered manufacturing method allows to introduce simultaneously microchannels and other cavities. - New developments in processing and in materials concepts are addressed to overcome limitations and to take maximum advantage of this technique. The technique is illustrated considering e.g. microwave circulators for communication, sensors for automotive applications, and piezoelectric actuators as examples, which demonstrate the potential of the technology for the manufacture of highly integrated multifunctional systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

397-406

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Roosen: Ceramic Trans. Vol. 97 (1999), pp.103-121.

Google Scholar

[2] R.E. Mistler, E.R. Twiname: Tape Casting. The Am. Ceram. Soc., Westerville, Ohio, (2000).

Google Scholar

[3] J.D. Cawley, A.H. Heuer, W.S. Newman, B.B. Mathewson: Am. Ceram. Soc. Bull., Vol. 75 (1996), p.75.

Google Scholar

[4] H. Neumann, G. Hötzel, G. Lindemann: in Langzeitverhalten von Funktionskeramiken, P. Otschick (ed. ), Werkstoff-Informationsgesell., Frankfurt, Germany, 1997, 251-263.

Google Scholar

[5] M. R. Gongora-Rubio, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, Brasil, http: /www. njnano. org/pasi/event/talk. May (2006).

Google Scholar

[6] D.L. Wilcox: European Microelectronic and Packaging Conf. 2001, IMAPS France, Versailles, pp.115-117, (2001).

Google Scholar

[7] R.R. Tummala: J. Am. Ceram. Soc., Vol 74 (1991) pp.895-908.

Google Scholar

[8] L.W. Tai, P.A. Lessing: J. Am. Ceram. Soc., Vol. 74 (1991) pp.155-160.

Google Scholar

[9] M. Boaro, J.M. Vohs, R.J. Gorte: J. Am. Ceram. Soc., Vol. 86 (2003) pp.395-400.

Google Scholar

[10] C.J. Russo, M.P. Harmer; H.M. Chan, G.A. Miller: J. Am. Ceram. Soc., Vol 75 (1992) pp.3396-3400.

Google Scholar

[11] P.M. Raj, S.M. Dunn, W.R. Cannon: J. Comp. -Assist. Microsc., Vol 10 (1998) pp.33-51.

Google Scholar

[12] M. Wagner, A. Stiegelschmitt, A. Roosen: Keramische Zeitschrift, Vol. 52 (2000), pp.490-495.

Google Scholar

[13] H. Hellebrand: in Materials Science and Technology, Vol. 17 A, Processing of Ceramic. R.J. Brook (ed. ), VCH Verlagsgesell., Weinheim, Germany, pp.189-265, (1996).

Google Scholar

[14] M. Piwonski, A. Roosen: J. Eur. Ceram. Soc., Vol. 19 (1996), pp.263-270.

Google Scholar

[15] M. Wagner, A. Roosen, H. Oostra, R. Hoeppener, M. De Moya, D.H. Pearce, T. Hooley: J. Eur. Ceram. Soc., Vol. 25 (2005), pp.2463-2466.

DOI: 10.1016/j.jeurceramsoc.2005.03.211

Google Scholar

[16] P.Z. Cai, D.J. Green, G.L. Messing: J. Am. Ceram. Soc., Vol. 80 (1997), pp.1929-39.

Google Scholar

[17] C. -R. Chang, J. -H. Jean: J. Am. Ceram. Soc., Vol. 81 (1998), pp.2805-2814.

Google Scholar

[18] A. Roosen, D. Pohle, M. Wagner: Ceramic Interconnect Technology Conference 2004, IMAPS USA, Denver, pp.260-265, (2004).

Google Scholar

[19] K.G. Ewsuk: Ceramic Trans. Vol. 15 (1990), pp.279-295.

Google Scholar

[20] J.C.M. Garnett: Phil. Trans. Roy. Soc., Vol. 203 (1904), p.385.

Google Scholar

[21] O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, W.A. Schiller: J. Eur. Ceram. Soc. Vol. 21 (2001), pp.1693-1697.

DOI: 10.1016/s0955-2219(01)00096-6

Google Scholar

[22] M. Valant, D. Suvorov: J. Eur. Ceram. Soc. Vol. 24 (2004), pp.1715-1719.

Google Scholar

[23] J.J. Jean, C.D. Lei, J.C. Chang, S.C. In: Ceramic Interconnect Technology Conf. 2004, IMAPS USA, Denver, pp.243-247, (2004).

Google Scholar

[24] K.R. Mikeska, R.C. Mason: Ceramic Trans., Vol. 15 (1990), pp.629-650.

Google Scholar

[25] R. K. Bordia, R. Raj: J. Am. Ceram. Soc., Vol. 68 (1988), pp.287-292.

Google Scholar

[26] F. Lautzenhiser, E. Amaya: Am. Ceram. Soc. Bull., Vol. 81 (2002), pp.27-32.

Google Scholar

[27] Y.J. Seo, Y.S. Cho: In Proc. 2nd Intern. Conf. Ceramic Interconnect and Ceramic Microsystems Technologies, IMAPS, Washington, DC, April 2006, CD-ROM.

Google Scholar

[28] M. Hagymási, A. Roosen, R. Karmazin, S. Walter, A. Naeini, R. Matz: In Proc. 1 st Intern. Conf. Ceramic Interconnect and Ceramic Microsystems Technologies. IMAPS, Washington, DC, April 2005, pp.96-102.

Google Scholar

[29] Siemens AG, Corporate Technology, Munich, Germany, (2004).

Google Scholar

[30] D.K. Kim, W.M. Kriven: J. Am. Ceram. Soc., Vol 86 (2003), pp.1962-64.

Google Scholar

[31] C. Reynaud, F. Thevenot, T. Chartier, J.L. Besson: J. Eur. Ceram. Soc., Vol 25 (2005), pp.589-597.

Google Scholar

[32] M.P. Rao, F.F. Lange: J. Am. Ceram. Soc., Vol 85 (2002), pp.1222-1228.

Google Scholar

[33] U. Schmid: Sensors and Actuators A: Physical, Vol. 97-98 (C) (2002), pp.253-263.

Google Scholar

[34] H. Dannheim, A. Roosen, U. Schmid: J. Amer. Ceram. Soc., Vol. 88 (2005), pp.2188-2194.

Google Scholar