Adsorption of Biomolecules on Ceramic Particles and the Impact on Biomedical Applications

Article Preview

Abstract:

Protein adsorption onto metal oxide surfaces is an essential aspect of the cascade of biological reactions taking place at all interfaces between implanted materials and the biological environment. The types and amounts of adsorbed proteins mediate subsequent adhesion, proliferation and differentiation of cells. Protein adsorption to surfaces of metal oxides and their kinetics are important in the formation and growth of seashells, one of the toughest natural ceramics, in modern bio-analytical devices as well as in bone and teeth implant technology. This paper describes results obtained in a feasibility study of how to use metal-oxide particles to obtain biosensors with a high turnover. The most important features of proteins are outlined describing them as purpose-built "polymers" from amino acids with specific conformations. Some key aspects of Metaloxide (MeO) surfaces in water and the influence of electrostatic and hydrophobic interaction on protein adsorption are reported. Results concerning the interaction between different proteins and MeO surfaces in water are discussed in detail. Examples of purely electrostatic interactions of proteins with MeO surfaces as well as the influence of hydrophobic interaction are elucidated. An outlook of the implications of the new insights on natural and synthetic materials will be given concerning bio-compatibility, bio-mineralization and self assembly of materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

741-751

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Walivaara, A. Askendal, I. Lundstrom and P. Tengvall: Journal of Biomaterials Science, Polymer Edition Vol. 8 (1996), pp.41-48.

Google Scholar

[2] F. Hook, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold and B. Kasemo: Colloids and Surfaces B: Biointerfaces Vol. 24 (2002), pp.155-170.

DOI: 10.1016/s0927-7765(01)00236-3

Google Scholar

[3] Y. Takami, S. Yamane, K. Makinouchi, G. Otsuka, J. Glueck, R. Benkowski and Y. Nose: Journal of Biomedical Materials Research Vol. 40 (1998), pp.24-30.

DOI: 10.1002/(sici)1097-4636(199804)40:1<24::aid-jbm3>3.0.co;2-t

Google Scholar

[4] D. M. Brunette, P. Tengvall, Textor M. and T. P., Titanium in Medicine - Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer, 2001, p.

DOI: 10.1007/978-3-642-56486-4

Google Scholar

[5] W. Bonfield and K. E. Tanner: Materials World Vol. 5 (1997), pp.18-20.

Google Scholar

[6] K. E. Healy, C. H. Thomas, A. Rezania, J. E. Kim, P. J. McKeown, B. Lom and P. E. Hockberger: Biomaterials Vol. 17 (1996), pp.195-208.

Google Scholar

[7] B. Kasemo and J. Lausmaa: CRC CRIT. REV. BIOCOMPAT. Vol. 2 (1986), pp.335-380.

Google Scholar

[8] M. J. Read, S. L. Burkett and A. M. Mayes: Materials Research Society Symposium - Proceedings Vol. 599 (2000), pp.337-342.

Google Scholar

[9] E. G. M. Bucciantini, Fabrizio Chiti, F. Baroni, L . Formigli, J. Zurdo, N. Taddei, G. Ramponi, C. M. Dobson, M. Stefani: Nature Vol. 416 (2002), pp.507-511.

DOI: 10.1038/416507a

Google Scholar

[10] B. Shen, S. Shimmon, M. M. Smith and P. Ghosh: Journal of Pharmaceutical and Biomedical Analysis Vol. 31 (2003), pp.83-93.

Google Scholar

[11] M. D. Gouda, M. A. Kumar, M. S. Thakur and N. G. Karanth: Biosensors and Bioelectronics Vol. 17 (2002), pp.503-507.

Google Scholar

[12] C. V. Kumar and A. Chaudhari: Journal of the American Chemical Society Vol. 122 (2000), pp.830-837.

Google Scholar

[13] Y. Lvov and F. Caruso: Analytical-chemistry Vol. 73 (2001), pp.4212-4217.

Google Scholar

[14] K. R. M. Heule, L. Cavalli, L.J. Gauckler: Advanced Materials Vol. 15 (2003), pp.1191-1194.

Google Scholar

[15] M. J. E. Carla E. Giacomelli, Patricia I. Ortiz, Marcelo J. Avena, Carlos P. De Pauli: Journal of Colloid and Interface Science Vol. 218 (1999), pp.404-411.

Google Scholar

[16] M. Tanaka, A. Mochizuki, T. Motomura, K. Shimura, M. Onishi and Y. Okahata: Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 193 (2001), pp.145-152.

DOI: 10.1016/s0927-7757(01)00682-3

Google Scholar

[17] R. Kurrat, B. Walivaara, A. Marti, M. Textor, P. Tengvall, J. J. Ramsden and N. D. Spencer: Colloids and Surfaces B: Biointerfaces Vol. 11 (1998), pp.187-201.

DOI: 10.1016/s0927-7765(98)00039-3

Google Scholar

[18] Charles M. Roth, John E. Sader and A. M. Lenhoff: Journal of Colloid and Interface Science Vol. 203 (1998), pp.218-221.

Google Scholar

[19] Z. Adamczyk: Advances in Colloid and Interface Science Vol. 100-102 (2003), pp.267-347.

Google Scholar

[20] B. Jonsson and J. Stahlberg: Colloids and Surfaces B: Biointerfaces Vol. 14 (1999), pp.67-75.

Google Scholar

[21] Y. Hemar and D. S. Horne: Journal of Colloid and Interface Science Vol. 206 (1998), pp.138-145.

Google Scholar

[22] Norde W. and E. Rouwendal: Journal of Colloid and Interface Science Vol. 139 (1990), p.

Google Scholar

[23] M. Luck, B. R. Paulke, W. Schroder, T. Blunk and R. H. Muller: Journal of Biomedical Materials Research Vol. 39 (1998), pp.478-485.

Google Scholar

[24] B. R. Paulke, P. -M. Moeglich, E. Knippel, A. Budde, R. Nitzsche and R. H. Mueller: Langmuir Vol. 11 (1995), pp.70-74.

DOI: 10.1021/la00001a015

Google Scholar

[25] J. T. Li and K. D. Caldwell: Langmuir Vol. 7 (1991), p.2034-(2039).

Google Scholar

[26] F. Galisteo and W. Norde: Colloids and Surfaces B: Biointerfaces Vol. 4 (1995), pp.375-387.

Google Scholar

[27] A. W. Vermeer, M. G. Bremer and W. Norde: Biochimica et Biophysica Acta Vol. 1425 (1998), pp.1-12.

Google Scholar

[28] F. Galisteo and W. Norde: Colloids and Surfaces B: Biointerfaces Vol. 4 (1995), pp.389-400.

Google Scholar

[29] R. L. J. Z. Alfred V. Elgersma, W. Norde and J. Lyklema: Journal of Colloid and Interface Science Vol. 138 (1990), pp.145-156.

Google Scholar

[30] Y. Yuan, M. R. Oberholzer and A. M. Lenhoff: Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 165 (2000), pp.125-141.

DOI: 10.1016/s0927-7757(99)00418-5

Google Scholar

[31] A. Krajewski, A. Piancastelli and R. Malavolti: Biomaterials Vol. 19 (1998), pp.637-641.

Google Scholar

[32] W. -K. Lee, J. -S. Ko and H. -M. Kim: Journal of Colloid and Interface Science Vol. 246 (2002), pp.70-77.

Google Scholar

[33] A. Kondo and J. Mihara: Journal of Colloid and Interface Science Vol. 177 (1996), pp.214-221.

Google Scholar

[34] W. N. Carla E. Giacomelli: Journal of Colloid and Interface Science Vol. 233 (2001), pp.234-240.

Google Scholar

[35] M. Malmsten, N. Burns and A. Veide: Journal of Colloid and Interface Science Vol. 204 (1998), pp.104-111.

Google Scholar

[36] E. J. W. Verwey, Overbeek J. T. G.: Elsevier Vol. (1948), p.

Google Scholar

[37] L. L. Derjaguin B.: Acta Physicochemica, USSR Vol. 14 (1941), p.633.

Google Scholar

[38] R. Kummert, Stumm W.: Journal of Colloid and Interface Science Vol. 75 (1980), pp.373-385.

Google Scholar

[39] C. Hidber Pirmin, J. Graule Thomas and J. Gauckler Ludwig: Journal of the American Ceramic Society Vol. 79 (1996), pp.1857-1867.

Google Scholar

[40] P. C. Hidber, T. J. Graule and L. J. Gauckler: Journal of the European Ceramic Society Vol. 17 (1997), pp.239-249.

Google Scholar

[41] L. Stryer, Biochemistry, Freeman & Co., 1997, p.

Google Scholar

[42] G. Zubay, Biochemistry, Addison-Wesley, London, 1983, p.

Google Scholar

[43] G. Rose, Geselowitz, AR, Lesser, GJ, Lee, RH, Zehfus, MH.: Science Vol. 229 (1985), pp.834-838.

Google Scholar

[44] K. Rezwan, L. P. Meier and L. J. Gauckler: Langmuir Vol. 21 (2005), pp.3493-3497.

Google Scholar

[45] K. Rezwan, A. R. Studart, J. Vörös and L. J. Gauckler: Journal of Physical Chemistry B Vol. 109 (2005), pp.14469-14474.

DOI: 10.1021/jp050528w

Google Scholar

[46] RCSB Protein Data Bank, www. rcsb. org/pdb/, Access: January (2006).

DOI: 10.2210/rcsb_pdb/mom_2006_11

Google Scholar

[47] W. G. Burton, K. D. Nugent, T. K. Slattery, B. R. Summers and L. R. Snyder: Journal of Chromatography A Vol. 443 (1988), pp.363-379.

Google Scholar

[48] D. C. Carter, Ho, J.X.: Advances in Protein Chemistry Vol. 45 (1994), pp.153-203.

Google Scholar

[49] C. J. van Oss, W. Wu, R. F. Giese and J. O. Naim: Colloids and Surfaces B: Biointerfaces Vol. 4 (1995), pp.185-189.

DOI: 10.1016/0927-7765(94)01170-a

Google Scholar

[50] H. Ohshima: Journal of Colloid and Interface Science Vol. 228 (2000), pp.190-193.

Google Scholar

[51] L. L. Hench and J. Wilson: Science Vol. 226 (1984), pp.630-636.

Google Scholar

[52] L. L. Hench and J. M. Polak: Science Vol. 295 (2002), pp.1014-1017.

Google Scholar

[53] K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini: Biomaterials Vol. in press p.

Google Scholar

[54] S. Levenberg, N. F. Huang, E. Lavik, A. B. Rogers, J. Itskovitz-Eldor and R. Langer: PNAS Vol. 100 (2003), pp.12741-12746.

DOI: 10.1073/pnas.1735463100

Google Scholar

[55] S. Levenberg and R. Langer, Advances in Tissue Engineering Current Topics in Developmental Biology, in: (Ed. )'^'(Eds. ), vol Academic Press, 2004, p. ^pp.113-134.

DOI: 10.1016/s0070-2153(04)61005-2

Google Scholar