Nanoceramics-Biomolecular Conjugates for Gene and Drug Delivery

Article Preview

Abstract:

We were quite successful in demonstrating that two-dimensional inorganic compounds like anionic and cationic clays can be used as gene or drug delivery carriers, those which are completely different from conventional ones such as viral-based, naked, and cationic liposomes, those which are limited in certain cases of applications due to their toxicity, immunogenecity, poor integration, and etc. Since LDHs with positive layer charge have an anion exchange capacity, functional biomolecules with a negative charge can be intercalated into hydroxide layers of LDH by a simple ion-exchange reaction to form a bio-LDH nanohybrid. On the contrary, clays can uptake biofuctional molecules or drugs with positive charge in the interlayer space by cation exchange reaction. The possible roles of inorganic lattice as the gene and drug delivery carrier will be shown by demonstrating the cellular uptake experiments of FITC-LDH, with laser scanning confocal fluorescence microscopy as well as of radioactive isotope-labeled ATP-LDH hybrid. As the typical examples for gene and drug delivery systems, As-myc-LDH, MTX-LDH, and Itraconazol-clay nanohybrids will be demonstrated in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

769-778

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Choy, N. G. Park, S. J. Hwang, D. H. Kim and N. H. Hur,: J. Am. Chem. Soc. Vol. 116 (1994), p.11564.

Google Scholar

[2] J. H. Choy, S. J. Kwon and G. S. Park,: Science Vol. 280 (1998), p.1589.

Google Scholar

[3] J. H. Choy, S. Y. Kwak, J. S. Park, Y. J. Jeong and J. Portier,: J. Am. Chem. Soc. Vol. 121 (1999), p.1399.

Google Scholar

[4] J. H. Choy, S. Y. Kwak, Y. J. Jeong and J. S. Park: Angew. Chem. Int. Ed., Vol. 39 (2000) p.4042.

Google Scholar

[5] J. H. Choy, J. S. Park, S. Y. Kwak, Y. J. Jeong and Y. S. Han: Mol. Cryst. Liq. Cryst. Vol. 341 (2000) p.1229.

Google Scholar

[6] J. H. Choy, S. Y. Kwak, J. S. Park and Y. J. Jeong: J. Mater. Chem. Vol. 11 (2001), p.1671.

Google Scholar

[7] J. H. Choy, J. S. Jung, J. M. Oh, M. Park, J. Jeong, Y. K. Kang and O. J. Han: Biomaterials, Vol. 25 (2004), p.3059.

Google Scholar

[8] F. H. Lin, Y. H. Lee, C. H. Jian, J. M. Wong, M. J. Shieh and C. Y. Wang: Biomaterials, Vol. 23 (2002), p. (1981).

Google Scholar

[9] W. F. Lee and Y. T. Fu: J. Appl. Poly. Sci., Vol. 89, (2003), p.3652.

Google Scholar

[10] J. H. Choy and Y. H. Son: Bull. Kor. Chem. Soc. Vol. 25 (2004) p.122.

Google Scholar

[11] A. I. Khan and D. O'Hare: J. Mater. Chem. Vol. 12 (2002) p.3191.

Google Scholar

[12] J. K. Thomas: Chem. Rev. Vol. 93 (1993), p.301.

Google Scholar

[13] M. Ogawa and K. Kuroda: Chem. Rev. Vol. 95 (1995), p.399.

Google Scholar

[14] S. L. Swartzen-Allen and E. Matijevic: Chem. Rev. Vol. 74 (1974), p.385.

Google Scholar

[15] J. R. Bertino: J. Clin. Oncol. Vol. 11 (1993) p.5.

Google Scholar

[16] K. Jan, V. Tomas and K. Winkler: Cell Dev. Biol. Vol. 37 (2001), p.450.

Google Scholar

[17] A. G. Gilman, L. S. Goodman and A. Gilman, The pharmacological basis of therapeutics 6th edition.

Google Scholar

[18] G. H. Hitchings and A. L. Smith: Adv. Enz. Regul. Vol. 18 (1980), p.349.

Google Scholar

[19] L. B. Bailey; Folate in health and disease (1995), Marcel Dekker.

Google Scholar

[20] S. Eksoberg, F. Alberioni, C. Rask, O. Beck, C. Palm, H. Schroeder and C. Peterson: Cancer Lett. Vol. 108 (1996), p.163.

Google Scholar

[21] N. H. Georgopapadakou: Drug transport in antimicrobial and anticancer chemotherapy (1995), Marcel Dekker.

Google Scholar