New Porous Visible Light Active Photocatalysts of MOx-Titanate (M = Cr, Ni) Nanohybrids

Article Preview

Abstract:

We have synthesized for the first time efficient visible light active photocatalysts of porous MOx-Ti1.83O4 (M = Ni, Cr) heterostructure through an exfoliation-restacking route. XRD, SEM, TEM, and XAS results reveal that the titanate nanosheets and the nanosized metal oxide particles are well ordered in layer-by-layer way. N2 adsorption-desorption isotherm and diffuse UV-vis spectroscopic analyses demonstrate that the present nanohybrids have a large surface area (~190-240 m2/g) and a narrow bandgap (~1.6-2.4 eV), which are ascribable to the formation of porous structure and a coupling of the wide bandgap titanate and the narrow bandgap metal oxide species, respectively. These nanohybrids show an enhanced photocatalytic activity to effectively decompose organic compounds under the irradiation of visible light. The present results highlight that the exfoliation-restacking route can provide a very powerful way of developing novel heterostructured materials with efficient visible light driven photocatalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

779-786

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Honda and A. Fujishima, Nature Vol. 238 (1972), p.37.

Google Scholar

[2] (a) M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. Vol. 95 (1995), p.69. (b) A. Mills and S. L. Hunte, J. Photochem. Photobiol. A Vol. 108 (1997), p.1.

Google Scholar

[3] (a) N. Vlachopoulos, P. Liska, J. Augustynski, and M. Grätzel, J. Am. Chem. Soc. Vol. 110 (1988), p.1216. (b) E. Bae, W. Choi, J. Park, H. S. Shin, S. B. Kim, and J. S. Lee, J. Phys. Chem. B Vol. 108 (2004), p.14093.

Google Scholar

[4] A. Schlafani, M. N. Mozzanega, and P. Pichat, J. Photochem. Photobiol. A Vol. 59 (1991), p.181.

Google Scholar

[5] (a) T. Sato, Y. Yamamoto, Y. Fujishiro, and S. Uchida, J. Chem. Soc., Faraday Trans. Vol. 92 (1996), p.5089. (b) J. H. Choy, H. C. Lee, H. Jung, and S. J. Hwang, J. Mater. Chem. Vol. 11 (2001), p.2232.

Google Scholar

[6] (a) W. Choi, A. Termin, and M. R. Hoffmann, J. Phys. Chem. Vol. 98 (1994), p.13669. (b) Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Nature Vol. 414 (2001), p.625.

Google Scholar

[7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science Vol. 293 (2001), p.269.

Google Scholar

[8] a) T. Sato, K. Masaki, T. Yoshioka, and A. Okuwaki, J. Chem. Tech. Biotechnol. Vol. 58 (1993).

Google Scholar

[9] a) J. H. Choy, H. C. Lee, H. Jung, and S. J. Hwang, J. Mater. Chem. Vol. 11 (2001), p.2232. b) J. H. Choy, H. C. Lee, H. Jung, H. Kim, and H. Boo, Chem. Mater. Vol. 14 (2002), p.2486.

DOI: 10.1021/cm010815m

Google Scholar

[10] a) F. Kooli, T. Sasaki, and M. Watanabe, Chem. Commun. (1999), p.211. b) L. Wang, Y. Ebina, K. Takada, and T. Sasaki, J. Phys. Chem. B Vol. 108 (2004), p.4283.

Google Scholar

[11] a) T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, J. Am. Chem. Soc. Vol. 118 (1996), p.8329. b) T. Sasaki and M. Watanabe, J. Am. Chem. Soc. Vol. 120 (1998), p.4682.

DOI: 10.1021/ja960073b

Google Scholar

[12] J. H. Choy, S. J. Hwang, and N. G. Park, J. Am. Chem. Soc. Vol. 119 (1997), p.1624.

Google Scholar

[13] Since there are two titanate layers in the unit cell of the pristine cesium titanate and the protonic titanate, the d002 value of both compounds corresponds to the sum of gallery height and layer thickness, like the (010) reflection in the nanohybrids.

Google Scholar

[14] M. Gateshki, S. J. Hwang, D. H. Park, Y. Ren, and V. Petkov, Chem. Mater. Vol. 16 (2004), p.5153.

Google Scholar

[15] C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations (John Wiley & Sons, New York, 1982), p.420.

Google Scholar

[16] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem. Vol. 57 (1985) p.603.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[17] G. A. Marking, J. A. Hanko, and M. G. Kanatzidis, Chem. Mater. Vol. 10 (1998), p.1191.

Google Scholar