Microwave Processing of Ceramics

Article Preview

Abstract:

Microwave (MW) processing is advantageous for processing ceramics with tailored microstructures. Its combination of volumetric heating, a wide range of controlled heating rates, atmosphere control and the ability to reach very high temperatures allows processing of 'difficult' materials like high thermal conductivity AlN and AlN composites and microstructure control in more readily sintered ceramics such as ZnO. MW sintering promotes development of thermal conductivity in AlN (225 W/mK) and its composites (up to 150W/mK inAlN-TiB2 and up to 129 W/mK in AlN-SiC when solid solution is avoided). In ZnO, heating rate controls sintered grain size. Increasing the heating rate from 5°C/min. to 4900°C decreases grain size from ~10 μm (comparable to conventional sintering of the same powder) to nearly the starting particle size (~ 1μm). Microstructural uniformity increases with sintering rate since ultra-rapid MW sintering minimizes the development of thermal gradients due to heat loss.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

857-862

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.F. Xu, I.K. Lloyd, Y. Carmel, T. Olorunyolemi, and O.C. Wilson, Jr.: J. Mater. Res. 16 (2001) p.2950.

Google Scholar

[2] G. Xu, Unique High Temperature Microwave Sintering of AlN Based Ceramics with High Thermal Conductivity, Ph.D. Dissertation, University of Maryland (2002).

Google Scholar

[3] R. Wroe, R. and A.T. Rowley: J. Mater. Sci., 3 (1996) p. (2019).

Google Scholar

[4] Z. Fathi, D.E. Clark, D.C. Folz and R. Hutcheon: Microwave: Theory and Application in Materials Processing II, Ceramic Transactions, Vol. 36 ( 1993) p.333.

Google Scholar

[5] M.A. Janney, M.L. Jackson and H.D. Kimrey: Microwaves: Theory and Application in Materials Processing II, Ceramic Transactions, Vol. 36 (1993) p.101.

Google Scholar

[6] A.G. Whittaker: Chem. Mater 17 (2005) p.3426.

Google Scholar

[7] K.I. Rybakov and V.E. Semenov: Phys. Rev. B, 49 (1994) p.64.

Google Scholar

[8] K.I. Rybakov and V.E. Semenov: Phys. Rev. B, 52 (1995) p.3030.

Google Scholar

[9] J.H. Booske, R.F. Cooper, S.A. Freeman, K.I. Rybakov and V.E. Semenov: Phys. Plasmas, 5 (1998) p.1664.

Google Scholar

[10] A. Birnboim, A. and Y. Carmel, Y: J. Am. Ceram. Soc., 82 (1999) p.3024.

Google Scholar

[11] Y.V. Bykov, S.V. Egorov, A.G. Eremeev, K.I. Rybako, V.E. Semenov, A.A. Sorokin, and S.A. Gusev: J. Mater. Sci. 36 (2001) p.131.

Google Scholar

[12] G.F. Xu, T. Olorunyolemi, O.C. Wilson, Jr., I.K. Lloyd and Y. Carmel: J. Mat. Res. 17 (2002) p.2837.

Google Scholar

[13] G.F. Xu, Y. Carmel, T. Olorunyolemi, I.K. Lloyd and O.C. Wilson, Jr: J. Mat. Res. 18 (2003) p.66.

Google Scholar

[14] G.F. Xu, T. Olorunyolemi, Y. Carmel, I.K. Lloyd and O.C. Wilson, Jr: J. Am. Ceram. Soc. 86 (2003) p. (2082).

Google Scholar