[1]
J.H. Schneibel and P.F. Becher, Iron and Nickel Aluminide Composites, J. Chinese Inst. Eng., Vol. 22, No. 1, 1999, pp.1-12.
Google Scholar
[2]
R. Subramanian and J.H. Schneibel, FeAl-TiC and FeAl-WC Composites - Melt Infiltration Processing, Microstructure and Mechanical Properties, Mat. Sci. Eng. A, Vol. 244, No. 1, 1998, pp.103-12.
DOI: 10.1016/s0921-5093(97)00833-2
Google Scholar
[3]
M. Ahmadian, D. Wexler, A. Calka, and T. Chandra, Liquid Phase Sintering of WC-FeAl and WCNi3Al Composites With and Without Boron, Mat. Sci. Forum, Vol. 426, No. 4, 2003, pp.1951-56.
DOI: 10.4028/www.scientific.net/msf.426-432.1951
Google Scholar
[4]
J.H. Schneibel, C.A. Carmichael, E.D. Specht, and R. Subramanian, Liquid-Phase Sintered Iron Aluminide-Ceramic Composites, Intermet., Vol. 5, no. 1, 1997, pp.61-7.
DOI: 10.1016/s0966-9795(96)00066-0
Google Scholar
[5]
G.J. Jiang, W.L. Li, and H.R. Zhuang, Synthesis of Tungsten Carbide-Nickel Composites by the Field-Activated Combustion Method, Mat. Sci. Eng. A, Vol. 354, No. 1-2, 2003, pp.351-7.
DOI: 10.1016/s0921-5093(03)00038-8
Google Scholar
[6]
A. Matsumoto, K. Kobayashi, T. Nishio, K. Ozaki, and S. Tada, S, Fabrication of FeAl-WC by Combustion Synthesis and the Mechanical Properties, Poster Presentation, PM2004 World Congress & Exhibition, Vienna, Austria, Oct. 17-21, (2004).
Google Scholar
[7]
A.K. Bhalla, Hot Explosive Compaction of Metal Powders, Trans. Powder Metall. Assoc. India, Vol. 7, No. 9, 1980, pp.1-8.
Google Scholar
[8]
J. D. Mote and J.J. Fitzpatrick, Investigation of a Method to Consolidate Hard Materials in a Tough Matrix, Emergent Process Methods for High Technology Ceramics, R.F. Davis, H. Palmour, and R.L. Porter, eds., Plenum Press, New York, NY, 1984, pp.695-710.
DOI: 10.1007/978-1-4684-8205-8_50
Google Scholar
[9]
A. Peikrishvili and N. Chikhradze, Explosive Working of Some Metals and Alloys at High Temperatures, Metallurgical Application of Shock Wave and High Strain Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M. A. Meyers, eds., Marcel Dekker Inc., New York, NY, 1986, pp.905-15.
DOI: 10.1080/10426919008953250
Google Scholar
[10]
L. Japaridze, A. Peikrishvili, N. Chikhradze, and G. Gotsiridze, Importance of Preheating at Dynamic Consolidation of Some Hard Materials, Shock-Wave and High-Strain Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, Inc., New York, NY, 1992, pp.463-72.
DOI: 10.1080/10426919008953250
Google Scholar
[11]
I. Simonsen, Y. Horie, T. Akashi, and A.B. Sawaoka, Diamond Formation in Aluminum Compressed With Ni-Graphite Under Shock Loading, J. Mat. Sci., Vol. 27, No. 7, 1992, pp.1735-40.
DOI: 10.1007/bf01107197
Google Scholar
[12]
L.J. Kecskes and I.W. Hall, Hot Explosive Consolidation of W-Ti Alloys, Metall. Trans., Vol. 26A, No. 9, 1995, pp.2407-14.
Google Scholar
[13]
A. Peikrishvili, L. Japaridze, N. Chikhradze, and E. Chagelishvili, Possibilities of Obtaining Combined Samples From Tungsten-Based Alloys by High-Temperature Shock Wave Treatment., Metallurgical and Materials Applications of Shock-Wave and High-Strain Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Elsevier, Amsterdam, Netherlands, 1995, pp.99-108.
DOI: 10.21236/ada248665
Google Scholar
[14]
L.J. Kecskes, S.T. Szewczyk, A.B. Peikrishvili, and N.M. Chikhradze, Hot Explosive Compaction of Aluminum Nickelide Composites, Metal. Trans. A, Vol. 35, No. 3, 2004, pp.1125-1131.
DOI: 10.1007/s11661-004-1015-6
Google Scholar
[15]
B.D. Andreev, V.A. Lukash, M.N. Voloshin, A.I. Markov, Yu.I. Sozin, and S.N. Dub, Certain Properties of Aluminum Nitride Compacts Produced by Shock-Wave Loading, Poroshkovaya Metallurgiya, No. 10, 1991, pp.27-32 (Russian).
DOI: 10.1007/bf00795851
Google Scholar