Microstructural Design for Attaining High-Strain-Rate Superplasticity in Oxide Materials

Article Preview

Abstract:

Factors limiting the strain rate of superplastic deformation in oxide ceramics are discussed from existing knowledge about the mechanisms of high-temperature plastic deformation and intergranular cavitation. The discussion leads to the following guide: simultaneously controlling the initial grain size, diffusivity, dynamic grain growth, homogeneity of microstructure and the number of residual defects is essential to attain high-strain-rate superplasticity. Along this guide, high-strain-rate superplasticity (HSRS) is attainable in some oxides consisting of tetragonal zirconia, α-alumina and a spinel phase: tensile ductility reached 300-2500% at a strain rate of 0.01-1.0 s-1. Post-deformation microstructure indicates that some secondary phases may suppress cavitation damage and thereby enhance HSRS. The guide is also essential to lower the limit of deformation temperature for a given strain rate. In monolithic tetragonal zirconia, grain-size refinement combined with doping of aliovalnt cations such as Mg2+, Ti4+ and Al3+ led to HSRS at 1350 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

923-932

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Wakai, S. Sakaguchi and Y. Matsuno: Adv. Ceram Mater. Vol. 1 (1986), p.259.

Google Scholar

[2] A. Dominguez-Rodrigez, F. Gutierrez\Morra, M. Jimenez-Melendo, J. L. Routbort and R. Chaim: Mater. Sci. Eng. Vol. A302 (2001), p.154.

Google Scholar

[3] K. Higashi: Mater. Sci. Forum, Vols. 357-359 (2001), p.345.

Google Scholar

[4] F. Wakai, Y. Shinoda, S. Ishihara and A. Dominiguez-Rodriguez: Acta mater. Vol. 50 (2002), p.1177.

Google Scholar

[5] I-W. Chen and L-A. Xue: J. Am. Ceram. Soc., Vol. 73 (1990), p.2585.

Google Scholar

[6] D.J. Schissler, A.H. Chokshi, T.G. Nieh and J. Wadsworth: Acta mater., Vol. 39 (1991), p.3227.

Google Scholar

[7] A.H. Chokshi, T.G. Nieh and J. Wadsworth: J. Am. Ceram. Soc. Vol. 74 (1991), p.869.

Google Scholar

[8] T. G. Langdon and Y. Ma: Acta metall. mater. Vol. 42 (1993), p.2753.

Google Scholar

[9] K. Hiraga, K Nakano, T.S. Suzuki and Y. Sakka: J. Am. Ceram. Soc. Vol. 85 (2002), p.2763.

Google Scholar

[10] H. Riedel: Fracture at High Temperatures (Springer-Verlag, Germany 1987).

Google Scholar

[11] Y. Sakka, Y. Oishi, K Ando and S. Morita: J. Am. Ceram. Soc. Vol. 74 (1991), p.2610.

Google Scholar

[12] A. Kuwabara, S. Yokota, Y. Ikuhara and T. Sakuma: Mater. Sci. Forum, Vols. 357-359 (2001), p.399.

Google Scholar

[13] A. Kuwabara, M. Nakano, H., Yoshida, Y. Ikuhara and T. Sakuma: Acta mater. Vol. 52 (2004), p.5563.

Google Scholar

[14] K. Hiraga, B. -N. Kim, K Morita, T.S. Suzuki and Y. Sakka: J. Ceram. Soc. Jpn. Vol. 113 (2002), p.191.

Google Scholar

[15] K. Hiraga and K. Nakano: Mater. Sci. Forum Vols. 243-245 (1997), p.387.

Google Scholar

[16] K. Hiraga and K. Nakano:Z. Metallkude., Vol. 95 (2004), p.559.

Google Scholar

[17] B. -N. Kim, K. Hiraga, Y. Sakka and B. -W. Ahn: Acta mater. Vol. 47 (1999), p.3433.

Google Scholar

[18] B. -N. Kim, K. Hiraga, K. Morita and Y. Sakka: Acta mater. Vol. 49 (2001), p.887.

Google Scholar

[19] K. Morit and K. Hiraga: Acta mater. Vol. 50 (2002), p.1075.

Google Scholar

[20] K. Kajihara, Y. Yoshizawa and T. Sakuma: Acta metall. mater. Vol. 43 (1995), p.1235.

Google Scholar

[21] K. Oka, N. Tabuchi, and T. Takashi: Mater. Sci. Forum, Vols. 304-306 (1999), P. 451.

Google Scholar

[22] T.S. Suzuki, Y. Sakka, K. Morita and K. Hiraga: Scripta. Mater. Vol. 43 (2000), p.705.

Google Scholar

[23] E. Sato, H. Morioka, K. Kuribayashi and D. Sundararaman: J. Mater. Sci. Vol. 34 (1999), p.4511.

Google Scholar

[24] Y. Ikuhara, P. Thavorniti and T. Sakuma: Acta mater. Vol. 45 (1997), p.5275.

Google Scholar

[25] J. Zhao, Y. Ikuhara and T. Sakuma: J. Am. Ceram. Soc. Vol. 81 (1998), p. (2087).

Google Scholar

[26] Y. Sakka, T. S. Suzuki, K. Morita, B. -N. Kim, K. Hiraga and Y. Moriyoshi: Adv. Eng. Mater. Vol. 5 (2003), p.130.

Google Scholar

[27] Y. Sakka, T. Ishii, T.S. Suzuki, K. Morita and K. Hiraga: J. Euro. Ceram. Soc., Vol. 24 2004), p.449.

Google Scholar

[28] B. -N. Kim, K. Hiraga, K. Morita, and Y. Sakka: Nature Vol. 413 (2001), p.288.

Google Scholar

[29] B. -N. Kim, K. Hiraga, K. Morita, Y. Sakka and T. Yamada: Scripta. Mater. Vol. 47 (2002), p.775.

Google Scholar

[30] B. -N. Kim, K. Hiraga and K. Morita: Mater. Sci. Forum Vols. 426-432 (2003), p.2729.

Google Scholar

[31] K. Morita, K. Hiraga and Y. Sakka: J. Am. Ceram. Soc. Vol. 85 (2002), p. (1900).

Google Scholar

[32] K. Morita, K. Hiraga, B. -N. Kim and Y. Sakka: Mater. Trans. Vol. 45 (2004), p. (2073).

Google Scholar

[33] K. Morita, K. Hiraga, B. -N. Kim and Y. Sakka: Mater. Sci. Forum Vol. 475-479 (2005), p.2977.

Google Scholar

[34] J. Cesarano III I. A. Aksay and A. Bleier: J. Am. Ceram. Soc. Vol. 71 (1988), p.250.

Google Scholar

[35] K. Tsuri and T. Sakuma: Scripta Mater. Vol. 34 (1996), p.443.

Google Scholar

[36] Z.J. Shen, H. Peng and M. Nygren: Adv. Mater. Vol. 15 (2003), p.1006.

Google Scholar

[37] G. -D. Zhan, J.E. Garay and A.K. Mukherjee: Nano Lett. Vol. 5 (2005), p.2593.

Google Scholar

[38] G. Chen, K. Zhang, G. Wang and W. Han: Ceram. Int. Vol. 30 (2004), p.2157.

Google Scholar