Shock Compression of Powders by Two-Stage Gasdynamic Gun

Article Preview

Abstract:

Powder consolidation using a shock compression apparatus is a potential method for the processing of bulk materials. Two-stage gasdynamic guns take advantage of light gases properties to accelerate projectiles to hypervelocity. The prototype developed at the CNR-IENI labs was modified in order to densify powders in very short times (1-100 μs). Powder compaction can be achieved either by the generation of a pressure pulse (10-30 104 bar) or by direct impact on the powder sample of a high speed projectile (0.5 - 2 Km/s). A numerical code, to simulate the gasdynamic gun behavior, has been written and, depending on the densification method (pressure pulse or impact) can be used to calculate the pressure and temperature histories in the densification stage or the pellet velocity, momentum and kinetic energy just before the impact. Preliminary experimental tests indicate the capability of this apparatus to densify different kind of precompacted powders.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

917-922

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Hokamoto, M. Fujita, S. Tanaka, T. Kodama and Y. Ujimoto: High-Temperature Shock Consolidation Of Diamond Powders Using Converging Underwater Shock Wave, Scripta Materialia Vol. 39, No. 10, (1998), pp.1383-1388.

DOI: 10.1016/s1359-6462(98)00311-x

Google Scholar

[2] K. Hokamoto, S. Tanaka, M. Fujita, R. Zhang, T. Kodama, T. Awano and Y. Ujimoto: An improved high-temperature shock compression and recovery system using underwater shock wave for dynamic compaction of powders, J. of Mater. Processing Tech. Vol. 85, (1999).

DOI: 10.1016/s0924-0136(98)00281-7

Google Scholar

[3] K. Hokamoto, S. Tanaka, M. Fujita, S. Itoh, M.A. Meyers and H.C. Chen: High temperature shock consolidation of hard ceramic powders, Physica B 239, (1997), pp.1-5.

DOI: 10.1016/s0921-4526(97)00364-5

Google Scholar

[4] K. Raghukandan, K. Hokamoto, J. S. Lee and A. Mori: Microstructural study on underwater shock consolidation Al-SiCp composite, Materials Science Forum 465-466 (2004), pp.201-206.

DOI: 10.4028/www.scientific.net/msf.465-466.201

Google Scholar

[5] X. Xu and N. N. Thadhani: Shock synthesis and characterization of nanostructured NITINOL alloy, Materials Science and Engineering A 384, (2004), pp.194-201.

DOI: 10.1016/s0921-5093(04)00812-3

Google Scholar

[6] Z. Q. Jin, C. Rockett, J. P. Liu, K. Hokamoto and N. N. Thadhani: Underwater Explosive Shock Consolidation of Nanocomposite Pr2Fe14B/α-Fe Magnetic Powders, Materials Trans. Vol. 46, No. 2, (2005), pp.1-4.

DOI: 10.2320/matertrans.46.372

Google Scholar

[7] G. Riva and A. Reggiori: Modeling of Pellet Acceleration by Two-Stage Gun, Fusion Technology, Vol. 15, N. 2 (1), (March 1989), pp.143-153.

DOI: 10.13182/fst89-a25352

Google Scholar

[8] G. Riva and A. Reggiori: Modeling of Low-Acceleration Two-Stage Guns for Tokamak Refueling, Fusion Technology, Vol. 21, N. 1, (January 1992), pp.31-40.

DOI: 10.13182/fst92-a29703

Google Scholar

[9] C. Zanotti, G. Riva, P. Giuliani, G. Daminelli, A. Reggiori and A. Terrosu: Powder Mixture Reaction and/or Compaction by Gasdynamic Gun, IENI-CNR Tech. Report R-2005/8, (2005).

Google Scholar